The mechanical energy at top =Mechanical energy at bottom
- Mass=m=54kg
- Height=h=51m
- Acceleration due to gravity=g=10m/s^2
- Velocity=v=2.6m/s

- Final energy at bottom=The kinetic energy










Answer:
When you ask a question, only two people can answer. When there are two answers, a little crown should appear at the bottom right hand corner. All you have to do is click the crown and it gives Brainliest. But you can only give it to one person per question
Explanation:
Answer:
100% efficiency
Explanation:
the machine has _100%_ efficiency.
(fill in the blank)
If you cannot get a chair to move across the floor, it is because static friction opposes your push. When you say static or kinetic friction the two object that facing each other are opposing each other. That's why you're having a hard time pushing the chair.
Complete Question
The speed of a transverse wave on a string of length L and mass m under T is given by the formula

If the maximum tension in the simulation is 10.0 N, what is the linear mass density (m/L) of the string
Answer:

Explanation:
From the question we are told that
Speed of a transverse wave given by

Maximum Tension is 
Generally making
subject from the equation mathematically we have




Therefore the Linear mass in terms of Velocity is given by
