Answer:
Explanation:
charge, q = 2e = 2 x 1.6 x 10^-19 C = 3.2 x 10^-19 C
mass, m = 4 u = 4 x 1.661 x 10^-27 kg = 6.644 x 10^-27 kg
Radius, r = 4.5 cm = 0.045 m
Magnetic field, B = 1.20 T
(a) Let the speed is v.


v = 2.6 x 10^6 m/s
(b) Let T be the period of revolution


T = 1.09 x 10^-7 s
(c) The formula for the kinetic energy is


K = 2.25 x 10^-14 J
(d) Let the potential difference is V.
K = qV


V = 70312.5 V
<span>3 meters a second.
Every 5 seconds, that runner should run 5*3=15 meters
(distance = average velocity times time).
That means that your slope must be 15meters / 5 seconds. </span>
The power exerted by the cyclist is determined as 50 W.
<h3>
Average power exerted by the cyclist</h3>
The power exerted by the cyclist is calculated as follows;
P = FV
where;
- F is the applied force
- V is velocity
P = 20 x 2.5
P = 50 W
Thus, the power exerted by the cyclist is determined as 50 W.
Learn more about power here: brainly.com/question/25263760
#SPJ1
Answer:
9.4 m/s
Explanation:
According to the work-energy theorem, the work done by external forces on a system is equal to the change in kinetic energy of the system.
Therefore we can write:

where in this case:
W = -36,733 J is the work done by the parachute (negative because it is opposite to the motion)
is the initial kinetic energy of the car
is the final kinetic energy
Solving,

The final kinetic energy of the car can be written as

where
m = 661 kg is its mass
v is its final speed
Solving for v,
