Answer:
17. h = l − l cos θ
18. 1.40 m
Explanation:
Let's call d the height of the triangle. We can then say:
h = l − d
Using trig, we can write d in terms of l and θ:
d = l cos θ
h = l − l cos θ
If l = 6 m and l cos θ = 40°:
h = 6 − 6 cos 40
h ≈ 1.40
Answer:
Simple answer: Yes
Explanation:
Even if you touch an item with a stick you re still doing work to it, most of the time something sitting on a table not being disturbed is having work done to it. Everything has the force of gravity working on it to essentially keep the items from floating away so workis being done to it.
Work done can be something so small (e.g) a pencil sitting on a table) or as big as an earthquake or kicking a ball through a window and smashing the glass.
You have to convert 400 cm into meters.
I'm assuming you mean a force of 10 Newtons in 8 seconds.
P= w/t
w=Fd
w= 10 x 4 = 40
P= 40 / 8 = 5
5 is your answer.
Answer:
The correct answer is: no definite shape or definite volume
Explanation:
The main characteristics of the gaseous state are:
-No form and no defined volume (occupy the space of the container that contains them)
-Low density
-Can be compressed easily (high compressibility)
-Gas molecules have high kinetic energy
Answer:
A) The free body diagrams for both the load of bricks and the counterweight are attached.
B) a = 2.96 m/s²
Explanation:
A)
The free body diagrams for both the load of bricks and the counterweight are attached.
B)
The acceleration of upward acceleration of the load of bricks is given by the following formula:
a = g(m₁ - m₂)/(m₁ + m₂)
where,
a = upward acceleration of load of bricks = ?
g = 9.8 m/s²
m₁ = heavier mass = mass of counterweight = 28 kg
m₂ = lighter mass = mass of load of bricks = 15 kg
Therefore, using these values in equation, we get:
a = (9.8 m/s²)(28 kg - 15 kg)/(28 kg + 15 kg)
<u>a = 2.96 m/s²</u>