It would still have oceans but no atmospheric water in Earth if no icy debris had arrived.
A. It would still have oceans but no atmospheric water.
<u>Explanation:</u>
Seas characterize our home planet, covering most of the Earth's surface and driving the water cycle that commands our territory and climate. However, progressively significant still, the narrative of our seas wraps our home in a far bigger setting that ventures profound into the universe and spots us in a rich group of sea universes that range our nearby planetary group and past.
It would in any case have seas yet no air water on Earth if no frigid flotsam and jetsam had shown up. For a long time, it was accepted that the frosty moons were only that - solidified husks, strong to their center. However, lately that thought has steadily been supplanted by a fresher, additionally energizing worldview.
Answer:
C
Explanation:
Since the solution have an observable color, that means that it absorbs light in the visible region hence it can be determined by colorimetry. Secondly, KMnO4 is a reducing agent which can be titrated against an oxidizing agent and it's concentration accurately determined.
Answer:
bro what Is this like I dont even kno
Isotopes are atoms of the same element that<span> has different masses.</span>
To find for the oxidizing agent, first let us write the
half reactions of this complete chemical reaction:
Ca = Ca2+ + 2e- <span>
2 H+ + 2e- = H2</span>
The oxidizing agent
would be the substance of the element that is reduced. We know that an element
is reduced when an electron is added to it. In this case, the element being
reduced is H. Therefore the oxidizing agent is HNO3.
Answer:
<span>HNO3</span>