Answer:
Explanation:
Given
mass of crane 
distance moved 
Since it is moving with a constant velocity therefore net force on it is zero
Tension force=weight
T=mg
Work done by Tension T is



Work done by Gravity will be equal in magnitude but opposite in sign and can be obtained by work energy theorem which states that change in kinetic energy of object is equal to work done by all the forces


Answer:
t_{out} =
t_{in}, t_{out} = 
Explanation:
This in a relative velocity exercise in one dimension,
let's start with the swimmer going downstream
its speed is

The subscripts are s for the swimmer, r for the river and g for the Earth
with the velocity constant we can use the relations of uniform motion
= D / 
D = v_{sg1} t_{out}
now let's analyze when the swimmer turns around and returns to the starting point

= D / 
D = v_{sg 2} t_{in}
with the distance is the same we can equalize

t_{out} = t_{in}
t_{out} =
t_{in}
This must be the answer since the return time is known. If you want to delete this time
t_{in}= D / 
we substitute
t_{out} = \frac{v_s - v_r}{v_s+v_r} ()
t_{out} = 
Answer:
ω = 380π rad/s
Explanation:
The formula for the angular frequency is the oscillation frequency f (hertz) multiplied by 2π
ω = 2πf
then
ω = 2π(190)
ω = 380π rad/s
2000÷330=6.06 repatant so the answer would be about 6.06 seconds
KE = 1/2mv^2
KE= 1/2(2)(5)^2
KE= 25 J