Q = C.v
v = Q/C
v = 4 × 10^(-10)/250
= 4 × 10^(-10)/2.5 × 10^2
= 1.6 × 10^(-12) volt
Increasing its velocity will add to the kinetic energy more as the formula for kinetic energy is 0.5*m*v^2. (The speed will be squared making it greater)
Explanation:
Given that,
The slope of the ramp, 
Mass of the box, m = 60 kg
(a) Distance covered by the truck up the slope, d = 300 m
Initially the truck moves with a constant velocity. We know that the net work done on the box is equal to 0 as per work energy theorem as :

u and v are the initial and the final velocity of the truck
(b) The work done on the box by the force of gravity is given by :

Here, 


W = -24550.13 J
(c) What is the work done on the box by the normal force is equal to 0 as the angle between the force and the displacement is 90 degrees.
(d) The work done by friction is given by :


Hence, this is the required solution.
Answer:
The spring was compressed the following amount:

Explanation:
Use conservation of energy between initial and final state, considering that the surface id frictionless, and there is no loss in thermal energy due to friction. the total initial energy is the potential energy of the compressed spring (by an amount
), and the total final energy is the addition of the kinetic energies of both masses:


