A large atom means that the radius would be large, meaning that the effective nuclear charge is low, therefore a lower electronegativity based on the periodic table. A smaller atom would mean the opposite, therefore a higher electronegativity. This combination would mean that the new molecule is polar.
Also, to answer your question, it would be most likely different from both atoms, as size doesn't really matter in a compound's properties.
Answer:
50 g Sucrose
Explanation:
Step 1: Given data
- Concentration of the solution: 2.5%
Step 2: Calculate the mass of sucrose needed to prepare the solution
The concentration of the solution is 2.5%, that is, there are 2.5 g of sucrose (solute) every 100 g of solution. The mass of sucrose needed to prepare 2000 g of solution is:
2000 g Solution × 2.5 g Sucrose/100 g Solution = 50 g Sucrose
Correct Question:
A chemist measures the enthalpy change ΔH during the following reaction: Fe(s) + 2HCl(g)-->FeCl2(s) + H2 ΔH=-157.0 kJ. Use this information to complete the table below. Round each of your answers to the nearest kJ/mol
Answer:
-314 kJ
+628 kJ
+157 kJ
Explanation:
The enthalpy change of a reaction measures the amount of heat that is lost or gained by it. If ΔH >0 the heat is gained, and the reaction is called endothermic, if ΔH<0, the heat is lost, and the reaction is called exothermic.
If the reaction is inverted, the value of ΔH is inverted too (the opposite endothermic reaction is exothermic), and if the reaction is multiplied by a constant, ΔH will be multiplied by it too.
1) 2Fe(s) + 4HCl --> 2FeCl2(s) + 2H2(g)
This reaction is the product of the given reaction by 2, so
ΔH = 2*(-157) = -314 kJ
2) 4FeCl2(s) + 4H2(g) --> 4Fe(s) + 8HCl(g)
This reaction is the inverted reaction given multiplied by 4, so
ΔH = 4*(157) = +628 kJ
3) FeCl2(s) + H2(g) --> Fe(s) + 2HCl
This reaction is the inverted reaction given, so
ΔH = +157 kJ