Answer:
The average emf induced in the coil is 175 mV
Explanation:
Given;
number of turns of the coil, N = 1060 turns
diameter of the coil, d = 20.0 cm = 0.2 m
magnitude of the magnetic field, B = 5.25 x 10⁻⁵ T
duration of change in field, t = 10 ms = 10 x 10⁻³ s
The average emf induced in the coil is given by;

where;
A is the area of the coil
A = πr²
r is the radius of the coil = 0.2 /2 = 0.1 m
A = π(0.1)² = 0.03142 m²

Therefore, the average emf induced in the coil is 175 mV
I think it's 39.53
(please do calculate it. I am not completely sure)
Answer: C. 1.4 10-11 N up
Explanation:
The magnetic force, F on a charge q moving with velocity v in a magnetic field B at an angle θ is given by:
F = q v B sin θ
Charge of proton, q = 1.6 × 10⁻¹⁹ C
Strength of magnetic field, B = 3.4 T pointing outwards
velocity of the proton, v = 2.5 × 10⁷ m/s towards left
Magnetic force is given by:
F = 1.6 × 10⁻¹⁹ C× 2.5 × 10⁷ m/s ×3.4 T× sin 90 = 13.6 × 10⁻¹² N = 1.4 × 10⁻¹¹ N up
The direction of the force is given by Lorentz Right hand rule. The fingers point magnetic field, the thumb points towards velocity, then the force on the proton is given by the direction perpendicular to the palm.
The magnetic field acts outwards with velocity of the proton towards left. The force would act perpendicular to the two -upwards.
Ans: Thus, the kinetic energy change = 4.5 JThe mass of puppy = 3kg
Kinetic energy initial =

=

Kinetic energy final =

Thus, the kinetic energy change = 4.5 J
Answer:
This is one of the hottest summers America has ever seen and Jeremiah Warren is taking advantage of the heat wave and doing a little cooking…in his car!
It was about 98 or 99 degrees in Texas, so Jeremiah thought he’d head outside to see if it was hot enough to actually cook food. He buttered up a frying pan on his dashboard and filled it with an egg, cookie dough, a hot dog and bacon (mmm…bacon!). He set up another frying pan on the sidewalk and a few hours later he came back for a mid-day snack.
Explanation: