1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Karolina [17]
3 years ago
15

Approximately how many kelvins are equal to 60°c?

Physics
2 answers:
ella [17]3 years ago
8 0

333.15 Kelvins are equal to 60 degrees celsius

Scrat [10]3 years ago
3 0

0°C = 273.15 K

Kelvin = °C + 273.15

<em>60°C = 333.15 K</em>

If you only want it approximately, then call it  333K .

You might be interested in
Write down two advantages of parallel combination ​
Simora [160]

Answer:

In parallel combination each appliance gets the full voltage.

If one appliance is switched on/of others are not affected.

The parallel circuit divide the current through the appliances.

In a parallel combination it is very easy to connect or disconnect a new appliance without affecting the working of other appliances.

pls mark me as brainlist

Explanation:

8 0
2 years ago
Four forces act on a hot-air balloon, as shown
dolphi86 [110]

The magnitude of the resultant force on the balloon is 374.13 N.

The given forces from the image;

  • <em>Upward force = 514 N</em>
  • <em>Downward force = 267 N</em>
  • <em>Eastward force = 678 N</em>
  • <em>Westward force = 397 N</em>

The net vertical force on the balloon is calculated as follows;

F_y = 514 \ N \ \ - \ \ 267 \ N\\\\F_y = 247 \ N

The net horizontal force on the balloon is calculated as follows;

F_x = 678 \ N \ - \ 397 \ N\\\\F_x = 281 \ N

The magnitude of the resultant force on the balloon is calculated as follows;

F = \sqrt{F_y^2 + F_x^2} \\\\F = \sqrt{(247)^2 + (281)^2} \\\\F= 374.13 \ N

Thus, the magnitude of the resultant force on the balloon is 374.13 N.

Learn more here:brainly.com/question/4404327

5 0
2 years ago
An electron moving to the left at 0.8c collides with a photon moving to the right. After the collision, the electron is moving t
SVETLANKA909090 [29]

Answer:

Wavelength = 2.91 x 10⁻¹² m, Energy = 6.8 x 10⁻¹⁴

Explanation:

In order to show that a free electron can’t completely absorb a photon, the equation for relativistic energy and momentum will be needed, along the equation for the energy and momentum of a photon. The conservation of energy and momentum will also be used.

E = y(u) mc²

Here c is the speed of light in vacuum and y(u) is the Lorentz factor

y(u) = 1/√[1-(u/c)²], where u is the velocity of the particle

The relativistic momentum p of an object of mass m and velocity u is given by

p = y(u)mu

Here y(u) being the Lorentz factor

The energy E of a photon of wavelength λ is

E = hc/λ, where h is the Planck’s constant 6.6 x 10⁻³⁴ J.s and c being the speed of light in vacuum 3 x 108m/s

The momentum p of a photon of wavelenght λ is,

P = h/λ

If the electron is moving, it will start the interaction with some momentum and energy already. Momentum of the electron and photon in the initial and final state is

p(pi) + p(ei) = p(pf) + p(ef), equation 1, where p refers to momentum and the e and p in the brackets refer to proton and electron respectively

The momentum of the photon in the initial state is,

p(pi) = h/λ(i)

The momentum of the electron in the initial state is,

p(ei) = y(i)mu(i)

The momentum of the electron in the final state is

p(ef) = y(f)mu(f)

Since the electron starts off going in the negative direction, that momentum will be negative, along with the photon’s momentum after the collision

Rearranging the equation 1 , we get

p(pi) – p(ei) = -p(pf) +p(ef)

Substitute h/λ(i) for p(pi) , h/λ(f) for p(pf) , y(i)mu(i) for p(ei), y(f)mu(f) for p(ef) in the equation 1 and solve

h/λ(i) – y(i)mu(i) = -h/λ(f) – y(f)mu(f), equation 2

Next write out the energy conservation equation and expand it

E(pi) + E(ei) = E(pf) + E(ei)

Kinetic energy of the electron and photon in the initial state is

E(p) + E(ei) = E(ef), equation 3

The energy of the electron in the initial state is

E(pi) = hc/λ(i)

The energy of the electron in the final state is

E(pf) = hc/λ(f)

Energy of the photon in the initial state is

E(ei) = y(i)mc2, where y(i) is the frequency of the photon int the initial state

Energy of the electron in the final state is

E(ef) = y(f)mc2

Substitute hc/λ(i) for E(pi), hc/λ(f) for E(pf), y(i)mc² for E(ei) and y(f)mc² for E(ef) in equation 3

Hc/λ(i) + y(i)mc² = hc/λ(f) + y(f)mc², equation 4

Solve the equation for h/λ(f)

h/λ(i) + y(i)mc = h/λ(f) + y(f)mc

h/λ(f) = h/lmda(i) + (y(i) – y(f)c)m

Substitute h/λ(i) + (y(i) – y(f)c)m for h/λ(f)  in equation 2 and solve

h/λ(i) -y(i)mu(i) = -h/λ(f) + y(f)mu(f)

h/λ(i) -y(i)mu(i) = -h/λ(i) + (y(f) – y(i))mc + y(f)mu(f)

Rearrange to get all λ(i) terms on one side, we get

2h/λ(i) = m[y(i)u(i) +y(f)u(f) + (y(f) – y(i)c)]

λ(i) = 2h/[m{y(i)u(i) + y(f)u(f) + (y(f) – y(i))c}]

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

Calculate the Lorentz factor using u(i) = 0.8c for y(i) and u(i) = 0.6c for y(f)

y(i) = 1/[√[1 – (0.8c/c)²] = 5/3

y(f) = 1/√[1 – (0.6c/c)²] = 1.25

Substitute 6.63 x 10⁻³⁴ J.s for h, 0.511eV/c2 = 9.11 x 10⁻³¹ kg for m, 5/3 for y(i), 0.8c for u(i), 1.25 for y(f), 0.6c for u(f), and 3 x 10⁸ m/s for c in the equation derived for λ(i)

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

λ(i) = 2(6.63 x 10-34)/[(9.11 x 10-31)(3 x 108){(5/3)(0.8) + (1.25)(0.6) + ((1.25) – (5/3))}]

λ(i) = 2.91 x 10⁻¹² m

So, the initial wavelength of the photon was 2.91 x 10-12 m

Energy of the incoming photon is

E(pi) = hc/λ(i)

E(pi) = (6.63 x 10⁻³⁴)(3 x 10⁸)/(2.911 x 10⁻¹²) = 6.833 x 10⁻¹⁴ = 6.8 x 10⁻¹⁴

So the energy of the photon is 6.8 x 10⁻¹⁴ J

6 0
3 years ago
A compass taken to Earth's moon does not point in a specific direction on the moon.
yKpoI14uk [10]
C) the moon does not have a strong magnetic field
5 0
2 years ago
Read 2 more answers
When an apple falls towards the earth,the earth moves up to meet the apple. Is this true?If yes, why is the earth's motion not n
Harlamova29_29 [7]

Answer:

because the mass of the apple is very less compared to the mass of earth. Due to less mass the apple cannot produce noticable acceleration in the earth but the earth which has more mass produces noticable acceleration in the apple. thus we can see apple falling on towards the earth but we cannot see earth moving towards the apple.

6 0
2 years ago
Other questions:
  • Two moving objects collide and move apart on paths 90 degrees apart. The total momentum after the collision is _______ the total
    12·1 answer
  • How do you calculate Mass using the formula for force?
    9·1 answer
  • A dragster going 15m/s increases its velocity to 25 m/s north in 4 seconds.
    9·1 answer
  • A 4.6-kg block of ice originally at 263 K is placed in thermal contact with a 15.7-kg block of silver (cAg = 233 J/kg-K) which i
    7·1 answer
  • A cd player has a current of 0.1 a flowing through it. if the source voltage is 4v, what is the resistance? R=V/I
    13·1 answer
  • The speed of a wave on a violin A string is 288 m/s and on the G string is 128 m/s. The force exerted on the ends of the string
    6·1 answer
  • Jupiter orbits the sun once every 4333 days in a circle of radius 7.79 * 10^10 m. What is Jupiter’s velocity
    14·1 answer
  • If i want an thrilling job witch should i chose im stuck beetween,
    7·1 answer
  • Craig Terrill has many _________. Press enter to interact with the item, and press tab button or down arrow until reaching the S
    15·1 answer
  • Một chất điểm dao động điều hòa trên trục Ox với phương trình vận tốc là
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!