It slows the object down so it cannot move well and evetually the object cannot be pushed and farther
The more energy orbits the radiation jumps the more energy it has. So if the frequency stays the same each time then the wavelength will get longer if there is more energy.
In this case the situation in which the radiation jumps the most energy orbits is when: the electron jumps from the fourth orbit to the first orbit. This will emit the longest wavelength
Answer:
31302 Volts and 55/111 Amps (≈0.5)
Explanation:
Secondary voltage / 141 = 1110 / 5
Secondary voltage = (1110*141) / 5
Secondary voltage = 31302
Amperage = 110/ (31302/141) = 55/111
Answer:
The west component of the given vector is - 42.548 meters.
Explanation:
We need to translate the sentence into a vectoral expression in rectangular form, which is defined as:

Where:
- Horizontal component of vector distance, measured in meters.
- Vertical component of vector distance, measured in meters.
Let suppose that east and north have positive signs, then we get the following expression:
![(x, y) = (-45\cdot \cos 19^{\circ}, -45\cdot \sin 19^{\circ})\,[m]](https://tex.z-dn.net/?f=%28x%2C%20y%29%20%3D%20%28-45%5Ccdot%20%5Ccos%2019%5E%7B%5Ccirc%7D%2C%20-45%5Ccdot%20%5Csin%2019%5E%7B%5Ccirc%7D%29%5C%2C%5Bm%5D)
![(x, y) = (-42.548,-14.651)\,[m]](https://tex.z-dn.net/?f=%28x%2C%20y%29%20%3D%20%28-42.548%2C-14.651%29%5C%2C%5Bm%5D)
The west component corresponds to the first component of the ordered pair. That is to say:

The west component of the given vector is - 42.548 meters.
The answer is B) evaporation,condensation, precipitation, runoff/storage