Answer:
<em>The distance the car traveled is 21.45 m</em>
Explanation:
<u>Motion With Constant Acceleration
</u>
It occurs when an object changes its velocity at the same rate thus the acceleration is constant.
The relation between the initial and final speeds is:
![v_f=v_o+at\qquad\qquad [1]](https://tex.z-dn.net/?f=v_f%3Dv_o%2Bat%5Cqquad%5Cqquad%20%5B1%5D)
Where:
a = acceleration
vo = initial speed
vf = final speed
t = time
The distance traveled by the object is given by:
![\displaystyle x=v_o.t+\frac{a.t^2}{2}\qquad\qquad [2]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%3Dv_o.t%2B%5Cfrac%7Ba.t%5E2%7D%7B2%7D%5Cqquad%5Cqquad%20%5B2%5D)
Solving [1] for a:

Substituting the given data vo=0, vf=6.6 m/s, t=6.5 s:


The distance is now calculated with [2]:

x = 21.45 m
The distance the car traveled is 21.45 m
The force (F) of attraction or repulsion between two point charges (Q1 and Q2) is given by the following rule:
F = <span>(k * q1 * q2) / (r^2) where:
</span>q1 and q2 are the charges
k is coulomb's constant = 9 x 10^9<span> N. m</span>2/ C<span>2
</span>r is the distance between the two charges.
Applying the givens in the mentioned equation, we find that:
F = (9 x 10^9<span> x 0.07 x 10^6 x 2) / (0.0108)^2 = 1.08 x 10^19 n </span>
Answer:

Explanation:
<u>Dimensional Analysis</u>
It's given the relation between quantities A, B, and C as follows:

and the dimensions of each variable is:



Substituting the dimensions into the relation (the coefficient is not important in dimension analysis):

Operating:


Equating the exponents:


Adding both equations:

Solving:


Answer:

A. Physics has changed the course of the world.