1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga2289 [7]
3 years ago
14

The temperature of a 5.0 kg block increases by 3 degrees C when 2,000 J of thermal energy are added to the block. What is the sp

ecific heat of the block? _____________
Physics
1 answer:
AlexFokin [52]3 years ago
4 0
Sorry bro I just need points for my calculus exam
You might be interested in
Two astronauts, each with a mass of 50 kg, are connected by a 7 m massless rope. Initially they are rotating around their center
kiruha [24]

Answer:

The angular  velocity is w_f =  1.531 \ rad/ s

Explanation:

From the question we are told that

     The mass of each astronauts is  m =  50 \ kg

      The initial  distance between the two  astronauts  d_i  =  7 \  m

Generally the radius is mathematically represented as r_i  =  \frac{d_i}{2} = \frac{7}{2}  =  3.5 \  m

      The initial  angular velocity is  w_1 = 0.5 \  rad /s

       The  distance between the two astronauts after the rope is pulled is d_f =  4 \  m

Generally the radius is mathematically represented as r_f  =  \frac{d_f}{2} = \frac{4}{2}  =  2\  m

Generally from the law of angular momentum conservation we have that

           I_{k_1} w_{k_1}+ I_{p_1} w_{p_1} = I_{k_2} w_{k_2}+ I_{p_2} w_{p_2}

Here I_{k_1 } is the initial moment of inertia of the first astronauts which is equal to I_{p_1} the initial moment of inertia of the second astronauts  So

      I_{k_1} = I_{p_1 } =  m *  r_i^2

Also   w_{k_1 } is the initial angular velocity of the first astronauts which is equal to w_{p_1} the initial angular velocity of the second astronauts  So

      w_{k_1} =w_{p_1 } = w_1

Here I_{k_2 } is the final moment of inertia of the first astronauts which is equal to I_{p_2} the final moment of inertia of the second astronauts  So

      I_{k_2} = I_{p_2} =  m *  r_f^2

Also   w_{k_2 } is the final angular velocity of the first astronauts which is equal to w_{p_2} the  final angular velocity of the second astronauts  So

      w_{k_2} =w_{p_2 } = w_2

So

      mr_i^2 w_1 + mr_i^2 w_1 = mr_f^2 w_2 + mr_f^2 w_2

=>   2 mr_i^2 w_1 = 2 mr_f^2 w_2

=>   w_f =  \frac{2 * m * r_i^2 w_1}{2 * m *  r_f^2 }

=>    w_f =  \frac{3.5^2 *  0.5}{  2^2 }

=>   w_f =  1.531 \ rad/ s

       

3 0
2 years ago
At an accident scene on a level road, investigators measure a car's skid mark to be 84 m long. It was a rainy day and the coeffi
Flura [38]

The given data is incomplete. The complete question is as follows.

At an accident scene on a level road, investigators measure a car's skid mark to be 84 m long. It was a rainy day and the coefficient of friction was estimated to be 0.36.  Use these data to determine the speed of the car when the driver slammed on (and locked) the brakes. (why does the car's mass not matter?)

Explanation:

Let us assume that v is the final velocity and u is the initial velocity of the car. Let s be the skid marks and \mu be the friction coefficient and m be the mass of car.

Hence, the given data is as follows.

                v = 0,     s = 84 m,     \mu = 0.36

According to Newton's law of second motion the expression for acceleration is as follows.

                      F = ma

                 -\mu N = ma

                 -\mu mg = ma

                      a = -\mu g

Also,    

               v^{2} = u^{2} + 2as

              (0)^{2} = u^{2} + 2(-\mu g)s

                  u^{2} = 2(\mu g)s

                            = \sqrt{2(0.36)(9.81 m/s^{2})(84 m)}

                            = 24.36 m/s

Thus, we can conclude that the speed of the car when the driver slammed on (and locked) the brakes is 24.36 m/s.

4 0
3 years ago
Which produces more carbon dioxide?
Serhud [2]
It depends on the car and the home and what it is producing but most commonly it would be cars producing more carbon dioxide.
6 0
3 years ago
If an object 18 millimeters high is placed 12 millimeters from a diverging lens and the image is formed 4 millimeters in front o
Svetach [21]
C.
18 / x = 12 / 4
12x = 72
x = 6mm
6 0
2 years ago
Which planet has a "great red spot"<br>​
bonufazy [111]

the answer is Jupiter

please mark the brainliest

8 0
2 years ago
Other questions:
  • The distance between two cities is 144km,it takes me 3hours to travel between these cities.What speed did I travel at?​
    15·1 answer
  • I’m not sure how to do 30, could someone pls help?
    8·1 answer
  • When two sticks are laid end-to-end they cover a length of 8.32 feet. One stick is 2.93 ft longer than the other. What is the le
    13·1 answer
  • A 26.5-mW laser beam of diameter 1.88 mm is reflected at normal incidence by a perfectly reflecting mirror. Calculate the radiat
    7·1 answer
  • How are magnetic poles and electrical charges similar?
    12·2 answers
  • Câu 1. Con lắc lò xo treo thẳng đứng, dao động điều hòa với biên độ 2cm và tần số góc 20 rad/s. Chiều dài tự nhiên của lò xo là
    7·1 answer
  • Light traveling through air encounter a second medium which slows the light to 2.7 x 10^8. What is the index of the medium?
    13·1 answer
  • "Videos of hoverboard riders who were injured when they fell while operating their hoverboards at a low speeds "went viral" over
    12·1 answer
  • PLS HELPPP! Why are ions harmful and why are they not harmful?
    11·2 answers
  • A horizontal force acts on an object on a fric- tionless horizontal surface. If the force is halved and the mass of the object i
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!