The correct unit for the speed of light is [ m s⁻¹ ].
Time = (distance) / (speed)
Time = (9.3 x 10^7 miles) x (1609 m/mile) / (3 x 10^8 m/s) = 498.8 seconds .
That would be <em>8.31 minutes</em>.
Answer:
A) 60%
B) p2 = 1237.2 kPa
v2 = 0.348 m^3
C) w1-2 = w3-4 = 1615.5 kJ
Q2-3 = 60 kJ
Explanation:
A) calculate thermal efficiency
Л = 1 -
where Tl = 300 k
Th = 750 k
hence thermal efficiency ( Л ) = [1 - ( 300 / 750 )] * 100 = 60%
B) calculate the pressure and volume at the beginning of the isothermal expansion
calculate pressure ( P2 ) :
= P3v3 = mRT3 ----- (1)
v3 = 0.4m , mR = 2* 0.287, T3 = 750
hence P3 = 1076.25
next equation to determine P2
Qex = p3v3 ln( p2/p3 )
60 = 1076.25 * 0.4 ln(p2/p3)
hence ; P2 = 1237.2 kpa
calculate volume ( V2 )
p2v2 = p3v3
v2 = p3v3 / p2
= (1076.25 * 0.4 ) / 1237.2
= 0.348 m^3
C) calculate the work and heat transfer for each four processes
work :
W1-2 = mCv( T2 - T1 )
= 2*0.718 ( 750 - 300 ) = 1615.5 kJ
W3-4 = 1615.5 kJ
heat transfer
Q2-3 = W2-3 = 60KJ
Q3-4 = 0
D ) sketch of the cycle on p-V coordinates
attached below
Answer:
The energy lost by the atoms is given off as an electromagnetic wave. ... even if it's not very intense, will always cause electrons to be emitted.
Explanation:
On a roller coaster, the greatest potential energy is at the highest point of the roller coaster
Answer:
v = 10 m/s
Explanation:
recall that velocity is related to wavelength and frequency by the formula
v = fλ
where v = velocity, f = frequency and λ= wavelength
Simply substitute these into the formula:
v = fλ
v = (0.5)(20)
v = 10 m/s