Hope this helps a little
initial distance up = 2
initial velocity component up = 9 sin 60 = 7.79
v = 9 sin 60 - 9.8 t
when v = 0, we are there
9.8 t = 7.79
t = .795 seconds to top
h = 2 + 7.79(.795) - 4.9(.795^2)
Two thermometers, calibrated in celsius and fahrenheit respectively, are put into a liquid. the reading on the fahrenheit scale is four times the reading on the celsius scale. the temperature of the liquid is:
Answer:
Time taken, 
Explanation:
It is given that, a small metal ball is suspended from the ceiling by a thread of negligible mass. The ball is then set in motion in a horizontal circle so that the thread’s trajectory describes a cone as shown in attached figure.
From the figure,
The sum of forces in y direction is :


Sum of forces in x direction,

.............(1)
Also, 
Equation (1) becomes :

...............(2)
Let t is the time taken for the ball to rotate once around the axis. It is given by :

Put the value of T from equation (2) to the above expression:


On solving above equation :

Hence, this is the required solution.
<span>Answer: Burrhus Frederic Skinner's Operant Conditioning.
</span><span>B.F. Skinner believed that to understand behavior, in the best way, is to look at the root causes or reasons of an action and its outcomes.
</span>
Skinner proposes the Law of Effect-Reinforcement. Here,he differentiated the positively reinforced behavior or the strengthened behavior, the negatively reinforced behavior (removal of the unpleasant experience), and weakened behavior because of punishment.
<span>
In positive reinforcement, behavior is strengthened through providing an outcome, an effect that an individual finds rewarding. Negative reinforcement also strengthens behavior because the unpleasant experience was removed. Punishment on the other hand is an opposite to reinforcement. Instead of increasing the response, it eliminates it or weakens it.
</span>