Explanation:
Average velocity = displacement / time
v = (25 m − 2 m) / 4.5 s
v = 5.11 m/s
Observe that the given vector field is a gradient field:
Let
, so that



Integrating the first equation with respect to
, we get

Differentiating this with respect to
gives

Now differentiating
with respect to
gives

Putting everything together, we find a scalar potential function whose gradient is
,

It follows that the curl of
is 0 (i.e. the zero vector).
Answer:
h> 2R
Explanation:
For this exercise let's use the conservation of energy relations
starting point. Before releasing the ball
Em₀ = U = m g h
Final point. In the highest part of the loop
Em_f = K + U = ½ m v² + ½ I w² + m g (2R)
where R is the radius of the curl, we are considering the ball as a point body.
I = m R²
v = w R
we substitute
Em_f = ½ m v² + ½ m R² (v/R) ² + 2 m g R
em_f = m v² + 2 m g R
Energy is conserved
Emo = Em_f
mgh = m v² + 2m g R
h = v² / g + 2R
The lowest velocity that the ball can have at the top of the loop is v> 0
h> 2R
Explanation:
it is almost zero .this is because the distance and the electrostatic force are inversely proportional