Answer:
System D --> System C --> System A --> System B
Explanation:
The gravitational force between two masses m1, m2 separated by a distance r is given by:

where G is the gravitational constant. Let's apply this formula to each case now to calculate the relative force for each system:
System A has masses m and m separated by a distance r:

system B has masses m and 2m separated by a distance 2r:

system C has masses 2m and 3m separated by a distance 2r:

system D has masses 4m and 5m separated by a distance 3r:

Now, by looking at the 4 different forces, we can rank them from the greatest to the smallest force, and we find:
System D --> System C --> System A --> System B
Answer:
4.53482 m/s
4.506 m/s
Explanation:
= Mass of player = 75 kg
= Initial velocity of player = 4.6 m/s
= Mass of ball = 0.47 kg
= Initial velocity of ball = 15 m/s
The linear momentum of the system is conserved

The player's speed is 4.53482 m/s
In the second case the equation of momentum is

The player's speed is 4.506 m/s
Follow stop drop and roll if the fire is in the room
Other wise exit immediately and find the nearest fire point. Then when you are out phone the fire services.
I hope this helps :)
Answer:
See Explanation
Explanation:
Solution:-
Earthquakes happen when rock below the Earth's surface moves abruptly. Usually, the rock is moving along large cracks in Earth's crust called faults. Most earthquakes happen at or near the boundaries between Earth's tectonic plates because that's where there is usually a large concentration of faults. Some faults crack through the Earth because of the stress and strain of the moving plates. Other, large faults are the boundary between plates, such as the San Andreas Fault on the North American west coast.
Since earthquakes happen along faults and most faults are near plate boundaries, the yellow dots in the animation are found mostly at the boundaries between Earth's tectonic plates.
A subduction zone is the biggest crash scene on Earth. These boundaries mark the collision between two of the planet's tectonic plates. The plates are pieces of crust that slowly move across the planet's surface over millions of years.
Where two tectonic plates meet at a subduction zone, one bends and slides underneath the other, curving down into the mantle. (The mantle is the hotter layer under the crust.)
Tectonic plates can transport both continental crust and oceanic crust, or they may be made of only one kind of crust. Oceanic crust is denser than continental crust. At a subduction zone, the oceanic crust usually sinks into the mantle beneath lighter continental crust. (Sometimes, oceanic crust may grow so old and that dense that it collapses and spontaneously forms a subduction zone, scientists think.)
Answer:
Part a)
When spring compressed by 2 cm
H = 1.47 m
Part b)
When spring is compressed by 4 cm
H = 5.94 m
Explanation:
Part a)
As we know that the spring is compressed and released
so here spring potential energy is converted into gravitational potential energy at its maximum height
So we will have


so we have

Part b)
Similarly when spring is compressed by 4 cm
then we have


so we have
