1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sp2606 [1]
4 years ago
8

What is the purpose of using significant figures? How does it relate to accuracy, precision, resolution, and uncertainty?

Physics
1 answer:
Umnica [9.8K]4 years ago
7 0

Answer:

#see solution for details

Explanation:

-Uncertainty refers to an estimate of the amount by which a result may differ from this value,

-Precision refers to how closely repeated measurements agree with each other.

-Accuracy refers to how closely a measured value agrees with the correct value.

-The number of significant figures is the number of digits believed to be correct by the person doing the measuring. Therefore, choosing the correct number of significant figures reduces the deviation from the point of accuracy/uncertainty or precision and thereby reducing margin of error in the ensuing calculations.

You might be interested in
Jennifer and Jamie have a class assignment to identify an example of climate change and an example of a change in weather. They
viva [34]

Answer:

II only

Explanation:

Hope this helped?

8 0
3 years ago
A cyclist is travelling at 4.0 m/s. She speeds up to 16 m/s in a time of 5.6 s. Calculate her acceleration.​
adell [148]

Answer:

Initial velocity, u=15m/s

Initial velocity, u=15m/sFinal velocity, v=0m/s

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18m

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15)

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36a

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36aa=

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36aa= 36

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36aa= 36−225

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36aa= 36−225

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36aa= 36−225 =−6.25m/s

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36aa= 36−225 =−6.25m/s 2

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36aa= 36−225 =−6.25m/s 2

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36aa= 36−225 =−6.25m/s 2 So, deceleration is 6.25m/s

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36aa= 36−225 =−6.25m/s 2 So, deceleration is 6.25m/s 2

Initial velocity, u=15m/sFinal velocity, v=0m/sDistance, s=18mAcceleration, a=?Using relation, v 2 −u 2 =2as0 2 −(15) 2 =2a×18−225=36aa= 36−225 =−6.25m/s 2 So, deceleration is 6.25m/s 2 .

5 0
2 years ago
Read 2 more answers
Sunglasses that reduce glare take advantage of which kind of wave
marysya [2.9K]

Answer:

It should be option B polarization

6 0
3 years ago
Read 2 more answers
Convert 27,549 into scientific notation
dezoksy [38]
2.7549 x 10^4 is the answer I hope this helped u
7 0
3 years ago
Charged particles posses a region of influence also called a (an)
Delvig [45]

Answer:(c)

Explanation:

Charge particle posses a region of influence called a filed i.e. Electric field.

It is a region around the charged particle such that other charge particle experiences force due to this field. The nature of force is decided by the charge on the particle creating an electric field.

For a positive charge, electric field lines emerge out of it, and for a negative charge, it acts as radially inwards.

6 0
3 years ago
Other questions:
  • The voltage entering a transformer’s primary winding is 120 volts. The primary winding is wrapped around the iron core 10 times.
    13·2 answers
  • For a satellite of mass mS in a circular orbit of radius rS around the Earth, determine its kinetic energy, K . Express your ans
    8·1 answer
  • The temperature of a substance is _________
    15·1 answer
  • How is a water molecule like a magnet and how is it different?
    15·2 answers
  • Explain how VSEPR theory predicts the shapes of molecules. Match the words in the left column to the appropriate blanks in the s
    12·1 answer
  • An athlete runs 600 m in 2 minutes and the next 1000 m in 1 minute on the same straight
    9·1 answer
  • 1. What is the mass of an object moving at 13 m/s and having 3042 J of kinetic energy?​
    5·1 answer
  • The square plates of a 3000-pF parallel-plate capacitor measure 40 mm by 40 mm and are separated by a dielectric that is 0.29 mm
    8·1 answer
  • ______ Is the distance and direction of an object's change in position from its starting point.
    12·2 answers
  • at location a, what are the directions of the electric fields contributed by the electron. calculate the magnitudes of the elect
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!