Answer:
0.285
Explanation:
Given two forces of different magnitude, it is important to note that the product of normal force and coefficient of kinetic friction should be equal to the sum of these two forces at equilibrium. Therefore, this can be Mathematically expressed as:

where N is normal force,
is coefficient of static friction, F is force and subscripts 1 and 2 represent larger and smaller magnitude forces respectively. Making
the subject of the formula then

Since normal force N is also given by mg where m is mass of object and g is acceleration due to gravity then substituting N with mg we obtain that
and substituting the figures given in the question, taking g as 9.81 we obtain that

Hence,the coefficient of kinetic energy is 0.285 as calculated
At constant temperature and volume the pressure of a gas is directly proportional to the number of moles of the gas. PV =n RT, where R is the universal gas constant. A change in pressure depends with the number of moles of the gas, such that if the number of moles increases then there are many vibrations and collision of the gas molecules with the walls of a container thus increasing the pressure and vice versa.
Using Snell's law
we get
sin(I)/sin(r) = U2/U1
• where U2 represent the water's refractive index and U1 represent air's refractive index
thus
sin45°sin(r) = 1.33/1
1/√2*1.33 = sin(r)
1/1.88 = sin(r)
0.531 = sin(r)
thus the refractive angle is 32°
We use the voltage division problem between the load resistance, amplifier output resistance as
.
Here,
is the output voltage,
is the amplifier voltage,
is the load resistance and
is the amplifier output resistance.
Therefore,
.
Thus, the amplifier output resistance is
.