Mechanical energy is made when something is moved. The energy that is moving is kinetic. And potential energy is stored energy. Mechanical energy can be used to store energy and to cause moving energy. For instance: a slingshot. Pulling back the band creates potential energy and releasing it creates kinetic energy.
Explanation:
It is given that, the position of a particle as as function of time t is given by :

Let v is the velocity of the particle. Velocity of an object is given by :

![v=\dfrac{d[(8t+9)i+(2t^2-8)j+6tk]}{dt}](https://tex.z-dn.net/?f=v%3D%5Cdfrac%7Bd%5B%288t%2B9%29i%2B%282t%5E2-8%29j%2B6tk%5D%7D%7Bdt%7D)

So, the above equation is the velocity vector.
Let a is the acceleration of the particle. Acceleration of an object is given by :

![a=\dfrac{d[8i+4tj+6k]}{dt}](https://tex.z-dn.net/?f=a%3D%5Cdfrac%7Bd%5B8i%2B4tj%2B6k%5D%7D%7Bdt%7D)

At t = 0, 

Hence, this is the required solution.
Answer:
108 km
Explanation:
The conversion factor between meters and feet is
1 m = 3.28 ft
So the second altitude, written in feet, can be rewritten in meters as

or in kilometers,

the first altitude in kilometers is

so the difference between the two altitudes is

Answer:
Non-flowering plants like mosses, horsetails, ferns, clubmosses, ginkgos, and cycads
Explanation:
Mark me brainliest plz