Answer:
The electromagnetic force
Explanation:
There are four fundamental forces in nature:
- Gravitational force: it is the force that acts between any particles having mass. It is relevant only on very large scales (planets, stars), since it is the weakest of the 4 forces, so very large masses are needed in order to produce relevant effects.
- Electromagnetic force: it is the force that acts between particles with electric charge. It can be attractive or repulsive. It is the main force that acts between atoms and molecules.
- Strong nuclear force: it is the force that keeps the protons and the neutrons together inside the nucleus. It acts only on very short scales (only within the nucleus of the atom)
- Weak nuclear force: it is the force responsible for the radioactive decays of certain nuclei. It also acts on very short scales.
Therefore, the force that is responsible for binding atoms together to form molecules is the electromagnetic force.
Answer:
F = 4.147 × 10^23
v = 1.31 × 10^4
Explanation:
Given the following :
mass of Jupiter (m1) = 1.9 × 10^27
Mass of sun (m2) = 1.99 × 10^30
Distance between sun and jupiter (r) = 7.8 × 10^11m
Gravitational force (F) :
(Gm1m2) / r^2
Where ; G = 6.673×10^-11 ( Gravitational constant)
F = [(6.673×10^-11) × (1.9 × 10^27) × (1.99 × 10^30)] / (7.8 × 10^11)^2
F = [25.231 × 10^(-11+27+30)] / (60.84 × 10^22)
F = (25.231 × 10^46) / (60.84 × 10^22)
F = 3.235 × 10^(46 - 22)
F = 0.4147 × 10^24
F = 4.147 × 10^23
Speed of Jupiter (v) :
v = √(Fr) / m1
v = √[(4.147 × 10^23) × (7.8 × 10^11) / (1.9 × 10^27)
v = √32.3466 × 10^(23+11) / 1.9 × 10^27
v = √32.3466× 10^34 / 1.9 × 10^27
v = √17. 023 × 10^34-27
v = √17.023 × 10^7
v = 13047.221
v = 1.31 × 10^4
There will not be enough momentum from the first hill to cross another hill if he same or larger size because of the way potential energy and kinetic energy works it will not be able go as high as it could go on he fist hill.
Think of it this way:
-- Any time you have something that means (some number) PER UNIT,
it doesn't matter how many units there are on the table or in the bucket,
because that amount doesn't change the (number) PER UNIT.
-- If oranges cost $1 PER POUND, it doesn't matter how many pounds
you buy, the whole bagful is still $1 PER POUND.
-- If a certain salad dressing has 40 calories PER Tablespoon, it doesn't
matter whether you eat a drop of it or drink the whole jar. You still get
40 calories PER Tablespoon.
-- Density means '(mass) PER unit of volume'. Whether you have a tiny
chip of the substance or a whole truckload of it, there's still the same
amount of mass IN EACH unit of volume.