Answer:
(a) The energy of the photon is 1.632 x
J.
(b) The wavelength of the photon is 1.2 x
m.
(c) The frequency of the photon is 2.47 x
Hz.
Explanation:
Let;
= -13.60 ev
= -3.40 ev
(a) Energy of the emitted photon can be determined as;
-
= -3.40 - (-13.60)
= -3.40 + 13.60
= 10.20 eV
= 10.20(1.6 x
)
-
= 1.632 x
Joules
The energy of the emitted photon is 10.20 eV (or 1.632 x
Joules).
(b) The wavelength, λ, can be determined as;
E = (hc)/ λ
where: E is the energy of the photon, h is the Planck's constant (6.6 x
Js), c is the speed of light (3 x
m/s) and λ is the wavelength.
10.20(1.6 x
) = (6.6 x
* 3 x
)/ λ
λ = 
= 1.213 x 
Wavelength of the photon is 1.2 x
m.
(c) The frequency can be determined by;
E = hf
where f is the frequency of the photon.
1.632 x
= 6.6 x
x f
f = 
= 2.47 x
Hz
Frequency of the emitted photon is 2.47 x
Hz.
Answer:
C
Explanation:
The potential energy decreases because Magnet 1 moves against the magnetic force. If it was increased it would be kinetic
Answer:
a) 4458K b) 5048K, c) 6166K, d) 5573K
Explanation:
The temperature of the stars and many very hot objects can be estimated using the Wien displacement law
T = 2,898 10⁻³ [m K]
T = 2,898 10⁻³ /
a) indicate that the wavelength is
Lam = 650 nm (1 m / 109 nm) = 650 10⁻⁹ m
Lam = 6.50 10⁻⁷ m
T = 2,898 10⁻³ / 6.50 10⁻⁷
T = 4,458 10³ K
T = 4458K
b) lam = 570 nm = 5.70 10⁻⁷ m
T = 2,898 10⁻³ / 5.70 10⁻⁷
T = 5084K
c) lam = 470 nm = 4.70 10⁻⁷ m
T = 2,898 10⁻³ / 4.7 10⁻⁷
T = 6166K
d) lam = 520 nm = 5.20 10⁻⁷ m
T = 2,898 10⁻³ / 5.20 10⁻⁷
T = 5573K