1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ratling [72]
3 years ago
14

A student dips a strip of metal into a liquid. Which is evidence that only a physical change has occurred?

Physics
1 answer:
sattari [20]3 years ago
3 0

Answer:

PLS add the picture too.....

You might be interested in
What is the direction of the current flowing through the wire—left or right? The current flows to the .
muminat

Answer:

right

Explanation:

Current flows from the positive (+ve) terminal of the battery to the negative (-ve). This is called conventional current flow.

Therefore, the electrons are negatively charged and want to get away from the Negative Terminal and go to the Positive Terminal, Hence the electrons move from left to right and current flows from right to left.

5 0
3 years ago
Read 2 more answers
Can an element be a molecule
Serga [27]

an element can make a molecule. so technically yes.

6 0
3 years ago
Read 2 more answers
A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th
Scorpion4ik [409]

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

4 0
3 years ago
Read 2 more answers
Using a hammer to drive a nail, it is the reaction force that brings the motion of the hammer to a stop but the _______________
ratelena [41]
Action force
Hope I helped out!
3 0
3 years ago
Solve the inequality 2(n+3) – 4&lt;6. Then graph<br> the solution.
Aloiza [94]
The solution is 22 2(n+3)-4&6
6 0
3 years ago
Other questions:
  • The temperature of 5 pounds of water is 40 degrees. Btus are added until the temp of
    5·1 answer
  • The term wavelength refers to which of the following?
    10·1 answer
  • What is the kinetic energy of a 1700 kg car traveling at a speed of 30 m/s (â65 mph)? does your answer to part b depend on the c
    12·1 answer
  • oppositely charged objects attract each other this attraction holds electrons in Adams and hold on to one another in many compou
    12·1 answer
  • What is the distance from the earth's center to a point outside the earth where the gravitational acceleration due to the earth
    10·1 answer
  • You want to arrive at your friend's house by 5pm her house is 240 kilometers away if your average speed will be 80km on the trip
    7·1 answer
  • 1) Which one of the following is vector,<br>B) Momentum<br>C) Mass<br>A) Energy<br>D) Temperature​
    12·1 answer
  • What is the resistance of al lamp that allows a current of 10 amps with 120 volts
    6·1 answer
  • If
    8·1 answer
  • De manera individual subraya la respuesta correcta: A) El Método Científico de la física experimental y su búsqueda de respuesta
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!