The answer is number two, number four, and number one
Explanation:
(a) The given figure is a convex lens.
(b) In this figure, the object is placed between F and optical center of a lens. Convex lens is a converging lens. It converges the beam of light falling on it after reflection. The image is formed on the same side of the lens as the object.
The formed image is enlarged and it is virtual and erect.
(i) Type : virtual
(ii) Orientation : upright
(iii) Size : Enlarged
Answer:
When did humans learn that the Earth is not the center of the universe?
Answer
1
Follow
Request
More
Ad by Odoo
Odoo: The open-source CRM!
Keep track of leads and opportunities, personalize sales cycles, and control forecasts with Odoo CRM!
Learn More
4 Answers
Asked in 3 Spaces


Science - Next Generation
Alexander Somm
, Consultant, Investor Relations at Novelpharm AG (2015-present)
Answered Oct 16
What, it isn’t?!
Sorry, I had to.
As far as I have read and understood, the Sumerians and later the Babylonians both had astronomical calendars that already differentiated planets and stars. Earth was not the center to them, the Sun likely was. That was around 2,200 - 1,600 BC.
After that, Greek philosopher Aristarchus of Samos (310 - 230 BC) was the first (recorded) to have believed the solar system was organized around the Sun, rather than the Earth. His heliocentric model was unpopular during Aristarchus’ lifetime, although it would inspire astronomers centuries later, such as Copernicus and Galileo.
Now, there are numerous archeological findings (cave paintings) and studies, that all suggest an understanding of complex astronomy in prehistoric times dating back as far as 40,000 years. This also explains how early, prehistoric migrants may have navigated the seas.
Explanation:
hope it helps
have a good day
The answer is C) an electromagnetic wave
An electromagnetic wave, which includes electromagnetic radiation such as visible light, moves the fastest of all of the options listed by a significant margin, especially through space. In fact, light travelling through space is technically the theoretical limit of how fast something can travel.
The frequency of the pendulum is independent of the mass on the end. (c)
This means that it doesn't matter if you hang a piece of spaghetti or a school bus from the bottom end. If there is no air resistance, and no friction at the top end, and the string has no mass, then the time it takes the pendulum to swing from one side to the other <u><em>only</em></u> depends on the <u><em>length</em></u> of the string.