Answer:
Explanation:
After the glorious appearance of Full Moon, the lunar shape starts to wane, meaning it gets smaller. It's visible later at night and into the early morning, and we see a steadily shrinking shape of the lunar surface that's being lit up.
Answer:
The particles that compose a gas are so small compared to the distances between them that the volume of the individual particles can be assumed to be negligible.
Explanation:
This is a postulate of the Kinetic Molecular Theory.
A is wrong. KMT assumes the that the volume of the particles is negligible.
B is wrong. KMT assumes that the distance between the particles is muck greater than their size.
D is wrong. It takes the large distances as a fact. KMT uses this as an assumption.
Answer:
a. Ksp = 4s³
b. 5.53 × 10⁴ mol³/dm⁹
Explanation:
a. Obtain an expression for the solubility product of AB2(S),in terms of s.
AB₂ dissociates to give
AB₂ ⇄ A²⁺ + 2B⁻
Since 1 mole of AB₂ gives 1 mole of A and 2 moles of B, we have the mole ratio as
AB₂ ⇄ A²⁺ + 2B⁻
1 : 1 : 2
Since the solubility of AB₂ is s, then the solubility of A is s and that of B is 2s
So, we have
AB₂ ⇄ A²⁺ + 2B⁻
[s] [s] [2s]
So, the solubility product Ksp = [A²⁺][B⁻]²
= (s)(2s)²
= s(4s²)
= 4s³
b. Calculate the Ksp of AB₂, given that solubility is 2.4 × 10³ mol/dm³
Given that the solubility of AB is 2.4 × 10³ mol/dm³ and the solubility product Ksp = [A²⁺][B⁻]² = 4s³ where s = solubility of AB = 2.4 × 10³ mol/dm³
Substituting the value of s into the equation, we have
Ksp = 4s³
= 4(2.4 × 10³ mol/dm³)³
= 4(13.824 × 10³ mol³/dm⁹)
= 55.296 × 10³ mol³/dm⁹
= 5.5296 × 10⁴ mol³/dm⁹
≅ 5.53 × 10⁴ mol³/dm⁹
Ksp = 5.53 × 10⁴ mol³/dm⁹
Well, this is somewhat difficult, because an electron already creates an electric field. However, I know that when an electron moves it then creates a magnetic field. So, I'm going to safely assume that when an electron moves, it creates an electric, a magnetic, and a gravitational field.
I hope that helps!