Remember the formula as per the second Law of Newton: F = m*a
And also remember that the weight is the force with which the mass is attracted by the planet (or satellite in the case of the moon).
With that information you can answer the questions:
a) Weight = F = m*a
m = 175 slugs = 175 lbm
i) Earth
a = 32.17 ft/s^2
Weight on Earth = 175 lbm * 32.17 ft / s^2 = 5,629.75 poundal
ii) Moon
a = [1/6] 32.17 ft/s^2
Weight on the Moon = [1/6]*5,629.75 poundal = 938.29 poundal
b) Force = 355 poundal
m = 25.0 slug
a in m/s^2 = ?
First calculate the force in ft/s^2
F = m*a => a = F/m = 355 poundal / 25.0 slug = 14.2 ft/s^2
Conversion:
14.2 ft / s^2 * [ 0.3048 m/ft] = 4.32816 m/s^2
Answer: 4.33 m/s^2
To solve this problem we can use following equation.
v =u + at
Where v is the final velocity (m/s), u is the initial velocity (m/s), a is the acceleration (m/s²) and t is the time taken (s).
v = 7 m/s
u = 4 m/s
a = ?
t = 5 s
By applying the equation, we can get
7 m/s = 4 m/s + a x 5 s
3 m/s = a x 5 s
a = 0.6 m/s²
Hence, the acceleration is 0.6 m/s² towards north.
Answer is "C".
Mentos reacts to coca-cola because of the sugars and then they expand which causes the soda to explode out of the open container. this is a chemical reaction because it cause the sugars to expand which you can't see happen.
Answer: Option (d) is the correct answer.
Explanation:
An atom or element which has the ability to readily gain an electron will have high electronegativity.
Both Beryllium and Calcium are alkaline earth metals and hence they are electropositive in nature.
Whereas both iodine and nitrogen are electronegative in nature. But across the period there is an increase in electronegativity and down the group there is a decrease in electronegativity.
Nitrogen belongs to period 2 and iodine belongs to the bottom of group 17. Thus, we can conclude that nitrogen is more electronegative than iodine.
Answer:
2.29 moles of Cr₂O₃ are produced
Explanation:
This is the reaction:
4 Cr + 3O₂ → 2Cr₂O₃
Ratio for this equation is 4:2, so 4 moles of chromium can produce the half of moles of chromium(III) oxide
4.58 mol of Cr may produce (4.58 .2)/4 = 2.29 moles of Cr₂O₃