Answer:
after t = 3 hours compound A remain 0.396 M
t = 12.98 hours
Explanation:
P = P_0*e^(-kt)
t = 30 minutes = 30/60 hours = 0.5 hours
and P_0 = 0.60M
and P after t = 0.5 hours is 0.56 M
(0.56/0.6) = e^(-kt)
0.933 =e^(-kt)
k = 0.138
P = P_0*e^(-0.138t)
Now after t = 3 hours,
P = 0.6* e^((-0.138)*3) = 0.396 M
time when P = 0.1 M
0.1 = 0.6*e^(-0.138t)
t = 12.98 hours
Answer:
As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. ... Thus, entropy measurement is a way of distinguishing the past from the future.
Explanation:
Sattelites don't need any fuel to stay in orbit. The applicable law is...."objects in motion tend to stay in motion". Having reached orbital velocity, any such object is essentially "falling" around the earth. Since there is no (or at least very little) friction in the vacuum of space, the object does not slow.... It simply continues.
Sattelites in "low" earth orbit do encounter some friction from the very thin upper atmosphere, and they will eventually "decay".
:)
<span>Old age and hundreds of thousands to millions of member stars.</span>
Answer:
Answer is C because light travels in a sight line but when light pass through a refractor the light from the source changes direction when passes through a refractor