Here Change in Kinetic Energy
= Work Done by Friction
Therefore, substituting the
given values to the equation, we get
0.5 * m * (vFinal^2 -
vInitial^2) = µ m g * d
Therefore
0.5*( 5.90^2 - Vfinal^2 ) =
0.100*9.8*2.10
Therefore
vfinal = 5.54 m/sec
<span> </span>
Hi!
<span>Acceleration is the rate of change of</span> velocity
Velocity is the rate of speed of an object
Answer:
h = 618.64 m
Explanation:
First we need to calculate the height gained by rocket while the fuel is burning. We use 2nd equation of motion for that purpose:
h₁ = Vit + (1/2)at²
where,
h₁ = height gained during the burning of fuel
Vi = Initial Velocity = 0 m/s
t = time = 7 s
a = acceleration = 8 m/s²
Therefore,
h₁ = (0 m/s)(7 s) + (1/2)(8 m/s²)(7 s)²
h₁ = 196 m
Now we use 1st equation of motion to find final speed Vf:
Vf = Vi + at
Vf = 0 m/s + (8 m/s²)(7 s)
Vf = 56 m/s
Now, we calculate height covered in free fall motion. Using 3rd equation of motion:
2ah₂ = Vf² - Vi²
where,
a = - 3.71 m/s²
h₂ = height gained during free fall motion = ?
Vf = Final Velocity = 0 m/s (since, rocket will stop at highest point)
Vi = 56 m/s
Therefore,
(2)(-3.71 m/s²)h₂ = (0 m/s)² - (56 m/s)²
h₂ = 422.64 m
So the total height gained will be:
h = h₁ + h₂
h = 196 m + 422.64 m
<u>h = 618.64 m</u>
When an item is raised, the work is done in opposition to gravity. When an item is worked on, energy is transmitted to it, and it develops gravitational potential energy. If the same thing falls from that height, gravity must do the same amount of effort to bring it back to the Earth's surface.
Answer:
Blood absorbs nutrients and the waste products of cells. It carries waste away from cells and pumps nutrients through the whole body.
Explanation: