Answer:
A buffer solution is prepared by adding 13.74 g of sodium acetate (NaC2H3O2) and 15.36 g of acetic acid to enough water to make 500 mL of solution.
Calculate the pH of this buffer.
Explanation:
The pH of a buffer solution can be calculated by using the Henderson-Hesselbalch equation:
![pH=pKa+log\frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
The pH of the given buffer solution can be calculated as shown below:
The molarity of the dilution solution is 0.050 M
<h3>Further explanation</h3>
Molarity is a way to express the concentration of the solution
Molarity shows the number of moles of solute in every 1 liter of solute or mmol in each ml of solution

Where
M = Molarity
n = Number of moles of solute
V = Volume of solution
Dilution formula :

M₁=6 M
V₁=12.5 ml
V₂=1.5 L=1500 ml

Answer:
There are three main components to kinetic theory: No energy is gained or lost when molecules collide. The molecules in a gas take up a negligible (able to be ignored) amount of space in relation to the container they occupy.
Explanation:
If I helped please mark as brainliest
Answer:49.3
Explanation:4.1j/g c * 25g * (t2-45c)=455j
T2-45c = 455j/4.1j/g c * 25g
455/104.6
45+4.3= 49.3 celsius