To solve this we assume
that the gas inside the balloon is an ideal gas. Then, we can use the ideal gas
equation which is expressed as PV = nRT. At a constant pressure and number of
moles of the gas the ratio T/V is equal to some constant. At another set of
condition of temperature, the constant is still the same. Calculations are as
follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 =284.15 x 2.50 / 303.15
<span>V2 = 2.34 L</span>
Perpendicular means at 90 degree angle. so,
<span>Perpendicular parking spaces require turning at a 90 degree angle.
When you are going to park perpendicularly, you need a distance of 7 to 8 feet from the vehicle you are parking next to, and when you are parking parallel, you need 5 feet distance from the vehicle you are parking next to.</span>
Answer:
The answer would be B) The Same
Explanation:
Not gonna lie I checked my class notes but I figured this would help :)
Good luck!!!
M = molar mass of the helium gas = 4.0 g/mol
m = mass of the gas given = 18.0 g
n = number of moles of the gas
number of moles of the gas is given as
n = m/M
n = 18.0/4.0
n = 4.5 moles
P = pressure = 2.00 atm = 2.00 x 101325 Pa = 202650 Pa
V = Volume of balloon = ?
T = temperature = 297 K
R = universal gas constant = 8.314
Using the ideal gas equation
P V = n R T
(202650) V = (4.5) (8.314) (297)
V = 0.055 m³
Answer:
Vf= 3.435 m/s
Explanation:
Given:
Initial velocity Vi =0 m/s (starting from Rest position)
θ = 37⁰
Distance S = 1 m
To find: Final Velocity Vf=?
fist we have to find the down slope net acceleration a = g sin θ
a= 9.81 sin 37⁰ = 5.9 m/s²
By 3rd equation of motion
2 a S= Vf² - Vi²
Vf = Square root ( 2 × 5.9 m/s² × 1 + 0 m/s)
Vf = Square root (11.8)
Vf= 3.435 m/s