Answer:
648.5 mL
Explanation:
Here we will assume that the pressure of the gas is constant, since it is not given or specified.
Therefore, we can use Charle's law, which states that:
"For an ideal gas kept at constant pressure, the volume of the gas is proportional to its absolute temperature"
Mathematically:

where
V is the volume of the gas
T is its absolute temperature
The equation can be rewritten as

where in this problem we have:
is the initial volume of the gas
is the initial temperature
is the final temperature
Solving for V2, we find the final volume of the gas:

Answer:
I think so henterogeneous
Actually, we can answer the problem even without the first statement. All we have to do is write the reaction for the production of sulfur trioxide.
2 S + 3 O₂ → 2 SO₃
The stoichiometric calculations is as follows:
6 g S * 1 mol/32.06 g S = 0.187 mol S
Moles O₂ needed = 0.187 mol S * 3 mol O₂/2 mol S = 0.2805 mol O₂
Since the molar mas of O₂ is 32 g/mol,
Mass of O₂ needed = 0.2805 mol O₂ * 32 g/mol = 8.976 g O₂
Explanation:
A nuclear fission reaction is defined as the reaction in which a heavy nucleus splits into small nuclei along with release of energy.
The given reaction is 
Now, we balance the mass on both reactant and product side as follows.
235 + 1 =
236 = 234 + x
x = 236 -234
= 2
So, now we balance the charge on both reactant and product side as follows.
92 + 0 = 
92 = 96 - y
y = 4
Thus, we can conclude that there are 2 neutrons and 4 beta-particles are produced in the given reaction.
Therefore, reaction equation will be as follows.

Answer:
Which statements describe how chemical formulas, such as H2O, represent compounds? ... They show the elements that make up a compound. They show the types of atoms that make up a molecule. They show the number of each type of atom in a molecule.