<span>There
are a number of ways to express concentration of a solution. This includes
molarity and molality. Molarity is expressed as the number of moles of solute per volume of
the solution. MOlality is expressed as moles per kg solution.
5.25 mol H2SO4 / kg solution ( 1 kg / 1000 g ) ( 1.266 g / mL ) ( 1000 mL / 1L ) = 6.6 M H2SO4</span>
1)
4 molecules of Hygdrogen is produced.
2)
4 atoma of Oxygen is produced.
3)
1 molecule of Fe3O4 is formed.
4)
1mole of 3 Fe : mole of 4 H2O
3 :4
=3/4
5) There are 2×4 = 8atoms of hydrogen on Reactant side.
Concentration of Ba2+ is 1.00 mol/dm3 or 1M
Answer:
7.22 x 10²³molecules
Explanation:
Given parameters:
Number of moles of hydrogen = 1.2moles
Unknown:
Number of molecules of hydrogen = ?
Solution:
From the concept of moles, a mole of a substance contains the Avogadro's number of particles.
1 mole of a substance = 6.02 x 10²³ molecules;
So; 1.2 moles of hydrogen = 1.2 x 6.02 x 10²³ molecules;
= 7.22 x 10²³molecules
1 mol = 6.022 x 10²³ atoms
In order to find how many atoms, dimly multiply the amount of moles you have by 6.022 x 10²³ or Avogadro's number.
So you have 1.75 mol CHC1₃ x (6.022x10²³) = 1.05385 x 10²⁴ atoms of CHCl₃
But now you have to round because of the rules of significant figures so you get 1.05 x 10²⁴ atoms of CHCl₃