1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
exis [7]
3 years ago
10

Assume that the moon is hit by about 25 million micrometeorite impacts each day, and that these impacts strike randomly around t

he moon's surface. also assume that after a footprint is hit by 20 micrometeorites it is erased. (a) roughly (order of magnitude) how long do we expect it would take, in years, for one of the footprints left by the apollo astronauts to be completely erased?
Physics
2 answers:
allsm [11]3 years ago
6 0

The time required for the footprint left by the Apollo astronaut to be erased is \fbox{\begin\\1010\,{\text{million}}\,{\text{yr}}\end{minispace}}.

Further explanation:

Some astronauts went to the moon to know about the moon. They walk on the surface of moon that’s why their footprints left there. It took time to erase the footprints.

Given:

The number of micrometeorites hitting the moon in one day is 25 \times {10^6}.

The area of footprint is 0.03\,{{\text{m}}^{\text{2}}}.

The surface area of moon is 3.79 \times {10^{19}}\,{{\text{m}}^{\text{2}}}.

Concept used:

When footprints hit the surface of moon it got impacted.

The expression for the number of micrometeorites hitting the surface area of footprints in one day is given as.

\fbox{\begin\\n = \dfrac{N}{{{A_{{\text{moon}}}}}}{A_{{\text{footprint}}}}\end{minispace}}                                   …… (1)

Here, N is the number of micrometeorites hitting the moon in one day, {A_{{\text{moon}}}} is the surface area of moon and {A_{{\text{footprint}}}} is the surface area of footprint.

The expression for the time to receive impacts on footprints.

\fbox{\begin\\T = \dfrac{{20}}{n}\end{minispace}}                                                                                 …… (2)

Substitute 25 \times {10^6} for N, 0.03\, {{\text{m}}^{\text{2}}} for {A_{{\text{footprint}}}} and in equation (1).

\begin{aligned}n &= \frac{{\left( {25 \times {{10}^6}} \right)}}{{\left( {3.79 \times {{10}^{19}}\,{{\text{m}}^{\text{2}}}}\right)}}\left({0.03\,{{\text{m}}^{\text{2}}}\right)\\&=1.979\times{10^{-8}}\\\end{aligned}

This means that the footprints receive 1.979 \times {10^{ - 8}} number of micrometeorites or impacts per day.

20 Impacts are required to erase the footprint in one day.

The expression for the time required to erase the footprints is given in equation (2).

Substitute 1.979 \times {10^{ - 8}}for n in equation (2).

\begin{aligned}T &= \frac{{20}}{{\left( {1.979 \times {{10}^{-8}}}\right)}}\\&=1.010\times{10^9}\,{\text{days}}\\\end{aligned}

Thus, it can be given in million years as \fbox{1010\,{\text{million}}\,{\text{yr}}}.

Learn more:

1.  Motion of ball under gravity brainly.com/question/10934170.

2.  Examples of wind and solar energy brainly.com/question/1062501.

3. Conservation of momentum brainly.com/question/9575487.

Answer Details:

Grade: College

Subject: Physics

Chapter: Astronomy  

Keywords:

Moon, meteorites, footprints, impact, surface area, 20 impacts, micrometeorites, 25 million  micrometeorites, 1010 million year,1.010*10^9 days .

defon3 years ago
3 0

Use the following formula to find the time meteorites take for a footprint to be erased:

T = [(Impact needed of a footprint)(4πr^2)]/[(impact rate)(Area of a footprint)].

 

Use the following formula to find the area of a foot:

Area of a foot = length of foot x width of foot

 

Substitute the given values in the above equation to get area of a foot:

Area of a foot = 25 cm x 10 cm = 250 cm^2

 

Convert the radius of moon in kilometers to centimeters.

R = 1738 km = 1738 km (10^5 cm / km) = 1.738 x 10^8 cm

 

The time meteorites take for a footprint to be erased:

T = (20)(4 π (1.738 x 10^8)^2) / (25 million / day) (250 cm^2) = 758.78 x 10^16 / 6250 x 10^6 /day = 1.21 x 10^9 days

 

Therefore, the time meteorites take for a footprint to be erased is 1.21 x 10^9 days

<span> </span>

You might be interested in
What is the equation for potential energy?
Mrrafil [7]
You can calculate potential energy by:
U = m.g.h

Where, U = potential energy
m = mass
g = acceleration due to gravity
h = height

Hope this helps!
7 0
4 years ago
Read 2 more answers
A helicopter starting on the ground is rising directly into the air at a rate of 25 ft/s. You are running on the ground starting
rusak2 [61]

Answer:

The rate of change of the distance between the helicopter and yourself (in ft/s) after 5 s is \sqrt{725} ft/ sec

Explanation:

Given:

h(t) =  25 ft/sec

x(t) = 10 ft/ sec

h(5) = 25 ft/sec . 5 = 125 ft

x(5) = 10 ft/sec . 5 = 50 ft

Now we can calculate the distance between the person and the helicopter by using the Pythagorean theorem

D(t) = \sqrt{h^2 + x^2}

Lets find the derivative of distance with respect to time

\frac{dD}{dt} (t)  = \frac{2h \cdot \frac{dh}{dt} +2x \cdot\frac{dx}{dt}} {2\sqrt{h^2 + x^2}}

Substituting the values of h(t) and  x(t) and simplifying we get,

\frac{dD}{dt}(t) = \frac{50t \cdot \frac{dh}{dt} + 20 \cdot \frac{dx}dt}{2\sqrt{625\cdot t^2 + 100 \cdot t^2}}

\frac{dh}{dt} = 25ft/sec

\frac{dx}{dt} = 10 ft/sec

\frac{Dd}{dt} (t) = \frac{1250t +200t}{2\sqrt{725}t}  = \frac{725}{\sqrt{725}}  = \sqrt{725} ft / sec

5 0
3 years ago
Using Newton's third law of motion, explain what happens when you let an untied balloon go.
mash [69]

Answer:

balloon pushes you back

Explanation:

3rd Law: Every action has an equal and opposite reaction

So, when you let go of the balloon it's pushed forward so the balloon pushes you back

7 0
4 years ago
Read 2 more answers
You place ammonium nitrate crystals in water and stirred. As you do so, the container becomes cold to the touch. This an example
ankoles [38]

The process of flask becoming cold is due to endothermic reaction.

Answer: Option B

<u>Explanation:</u>

So two kinds of heat transfer can be possible in any chemical reaction. If the sample is considered as system and the sample container is considered as the surrounding, then heat transfer can occur between them.

If the heat is transferred from the surrounding to the system , then it is an endothermic reaction. And in those cases, the sample holder will be becoming colder. This is because the heat from the surrounding that is the container will be utilized to complete the reaction.

While when there is transfer of heat from the system to surrounding , it will be exothermic reaction and the beaker will be getting hot in this process. So in the present case, the container is becoming cold because of occurrence of endothermic process.

8 0
4 years ago
What are the positive impacts of Genetically Modified Crops?
xeze [42]

Answer:

The crops will have the ability to be resistant to certain diseases

7 0
2 years ago
Read 2 more answers
Other questions:
  • When a boat is placed in liquid, two forces act on the boat. Gravity pulls the boat down with a force equal to the weight of the
    11·1 answer
  • A plane flies from base camp to lake a, 200 km away in the direction 20.0° north of east. after dropping off supplies it flies t
    12·1 answer
  • A series RLC circuit with a resistance of 121.0 Ω has a resonance angular frequency of 5.1 ✕ 105 rad/s. At resonance, the voltag
    5·1 answer
  • What is the kinetic energy of a hammer that starts from rest and decreases its potential energy by 10 kJ?
    8·1 answer
  • Which law states that the orbit of each planet is elliptical and that the Sun is at one focus of each ellipse? A. Kepler's first
    9·1 answer
  • Polarizing windows, filters, etc. are often used to reduce the amount of light that enters the lens of a camera or into a room o
    8·1 answer
  • A mass is placed at the end of a spring. It has starting velocity of V &amp; allowed to oscillate freely. If the mass has a star
    14·1 answer
  • which research model refers to the study of an individual group or community over a predetermined period
    10·1 answer
  • The end that points southward is called
    11·1 answer
  • If the mass of the cement is 15 000 kg, calculate the density of this cement sample in kgm-3
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!