1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
exis [7]
3 years ago
10

Assume that the moon is hit by about 25 million micrometeorite impacts each day, and that these impacts strike randomly around t

he moon's surface. also assume that after a footprint is hit by 20 micrometeorites it is erased. (a) roughly (order of magnitude) how long do we expect it would take, in years, for one of the footprints left by the apollo astronauts to be completely erased?
Physics
2 answers:
allsm [11]3 years ago
6 0

The time required for the footprint left by the Apollo astronaut to be erased is \fbox{\begin\\1010\,{\text{million}}\,{\text{yr}}\end{minispace}}.

Further explanation:

Some astronauts went to the moon to know about the moon. They walk on the surface of moon that’s why their footprints left there. It took time to erase the footprints.

Given:

The number of micrometeorites hitting the moon in one day is 25 \times {10^6}.

The area of footprint is 0.03\,{{\text{m}}^{\text{2}}}.

The surface area of moon is 3.79 \times {10^{19}}\,{{\text{m}}^{\text{2}}}.

Concept used:

When footprints hit the surface of moon it got impacted.

The expression for the number of micrometeorites hitting the surface area of footprints in one day is given as.

\fbox{\begin\\n = \dfrac{N}{{{A_{{\text{moon}}}}}}{A_{{\text{footprint}}}}\end{minispace}}                                   …… (1)

Here, N is the number of micrometeorites hitting the moon in one day, {A_{{\text{moon}}}} is the surface area of moon and {A_{{\text{footprint}}}} is the surface area of footprint.

The expression for the time to receive impacts on footprints.

\fbox{\begin\\T = \dfrac{{20}}{n}\end{minispace}}                                                                                 …… (2)

Substitute 25 \times {10^6} for N, 0.03\, {{\text{m}}^{\text{2}}} for {A_{{\text{footprint}}}} and in equation (1).

\begin{aligned}n &= \frac{{\left( {25 \times {{10}^6}} \right)}}{{\left( {3.79 \times {{10}^{19}}\,{{\text{m}}^{\text{2}}}}\right)}}\left({0.03\,{{\text{m}}^{\text{2}}}\right)\\&=1.979\times{10^{-8}}\\\end{aligned}

This means that the footprints receive 1.979 \times {10^{ - 8}} number of micrometeorites or impacts per day.

20 Impacts are required to erase the footprint in one day.

The expression for the time required to erase the footprints is given in equation (2).

Substitute 1.979 \times {10^{ - 8}}for n in equation (2).

\begin{aligned}T &= \frac{{20}}{{\left( {1.979 \times {{10}^{-8}}}\right)}}\\&=1.010\times{10^9}\,{\text{days}}\\\end{aligned}

Thus, it can be given in million years as \fbox{1010\,{\text{million}}\,{\text{yr}}}.

Learn more:

1.  Motion of ball under gravity brainly.com/question/10934170.

2.  Examples of wind and solar energy brainly.com/question/1062501.

3. Conservation of momentum brainly.com/question/9575487.

Answer Details:

Grade: College

Subject: Physics

Chapter: Astronomy  

Keywords:

Moon, meteorites, footprints, impact, surface area, 20 impacts, micrometeorites, 25 million  micrometeorites, 1010 million year,1.010*10^9 days .

defon3 years ago
3 0

Use the following formula to find the time meteorites take for a footprint to be erased:

T = [(Impact needed of a footprint)(4πr^2)]/[(impact rate)(Area of a footprint)].

 

Use the following formula to find the area of a foot:

Area of a foot = length of foot x width of foot

 

Substitute the given values in the above equation to get area of a foot:

Area of a foot = 25 cm x 10 cm = 250 cm^2

 

Convert the radius of moon in kilometers to centimeters.

R = 1738 km = 1738 km (10^5 cm / km) = 1.738 x 10^8 cm

 

The time meteorites take for a footprint to be erased:

T = (20)(4 π (1.738 x 10^8)^2) / (25 million / day) (250 cm^2) = 758.78 x 10^16 / 6250 x 10^6 /day = 1.21 x 10^9 days

 

Therefore, the time meteorites take for a footprint to be erased is 1.21 x 10^9 days

<span> </span>

You might be interested in
4. What quantity of heat is required to raise the temperature of 100
kupik [55]

Answer:

Q = 836.4 Joules.

Explanation:

Given the following data;

Mass = 100 grams

Initial temperature = 25°C

Final temperature = 45°C

We know that the specific heat capacity of water is equal to 4.182 J/g°C.

To find the quantity of heat;

Heat capacity is given by the formula;

Q = mcdt

Where;

Q represents the heat capacity or quantity of heat.

m represents the mass of an object.

c represents the specific heat capacity of water.

dt represents the change in temperature.

dt = T2 - T1

dt = 45 - 25

dt = 20°C

Substituting the values into the equation, we have;

Q = 100*4.182*20

Q = 836.4 Joules.

5 0
3 years ago
Ciara is swinging a 0.015 kg ball tied to a string around her head in a flat, horizontal circle. The radius of the circle is 0.7
Sophie [7]

Answer:

B) 1.2 N, toward the center of the circle

Explanation:

The circumference of the circle is:

C = 2πr

C = 2π (0.70 m)

C = 4.40 m

So the velocity of the ball is:

v = C/t

v = 4.40 m / 0.60 s

v = 7.33 m/s

Sum of the forces in the radial direction:

∑F = ma

T = m v² / r

T = (0.015 kg) (7.33 m/s)² / (0.70 m)

T = 1.2 N

The tension force is 1.2 N towards the center of the circle.

4 0
3 years ago
Read 2 more answers
The difference between relational and reactive aggression is that relational aggression is ______, whereas reactive aggression i
givi [52]

Answer:

Social, physical behavior

Explanation:

The relational aggression is the aggression which caused or give to person by doing harm to his or her relationship or social image.

Reactive aggression is the aggression which is caused by threatening someone, or caused by provocation, or caused due to frustration.

Therefore, the basic  differentiation in  between both the aggression is that relational aggression is caused by by damaging social status whereas reactive aggression is caused through physical behavior.

8 0
3 years ago
A 2500 kg car traveling to the north is slowed down uniformly from an initial velocity of 20 m/s by a 5620 N braking force actin
Dennis_Churaev [7]

Answer:

the distance traveled by the car is 42.98 m.

Explanation:

Given;

mass of the car, m = 2500 kg

initial velocity of the car, u = 20 m/s

the braking force applied to the car, f = 5620 N

time of motion of the car, t = 2.5 s

The decelaration of the car is calculated as follows;

-F = ma

a = -F/m

a = -5620 / 2500

a = -2.248 m/s²

The distance traveled by the car is calculated as follows;

s = ut + ¹/₂at²

s = (20 x 2.5) + 0.5(-2.248)(2.5²)

s = 50 - 7.025

s = 42.98 m

Therefore, the distance traveled by the car is 42.98 m.

5 0
3 years ago
Review. From a large distance away, a particle of mass 2.00 g and charge 15.0σC is fired at 21.0 i^ m/s straight toward a second
MissTica

(a)

Determine the system's initial configuration at ri = infinite particle separation and the system's final configuration at the point of closest approach.

Since the two-particle system is not being affected by any outside forces, we may treat it as an isolated system for momentum and use the momentum conservation law.

m1v1 + m1v2 = (m1+m2)v

The second particle's starting velocity is zero, so:

m1v1  = (m1+m2)v

After substituting the values we get,

v = 6i m/s

(b)

Since the two particle system is also energy-isolated, we may use the energy-conservation principle.

dK + dU = 0

Ki +Ui = Kf + Uf

Substituting the values,

1/2m1v1^2i + 1/2 m2v2^2i + 0 = 1/2m1v1^2f + 1/2m2v2^2f +ke q1q2/rf

The second particle's initial speed is 0 (v2 = 0). Additionally, both the first and second particle's final velocity have the same value, v. Put these values in place of the preceding expression:

1/2m1v1^2i  = 1/2m1v1^2 + 1/2m2v2^2 +ke q1q2/rf

After solving we get,

rf = 2ke q1q2 / m1v1^2 - (m1+m2)v^2

Substituting the values we get,

rf = 3.64m

(c)

v1f = (m1-m2 / m1 + m2) v1i

v1f  = -9i m/s

(d)

v2f =  (2m1/ m1 +m2) v1i

After substituting the values,

v2f = 12i m/ s

Question :

Review. From a large distance away, a particle of mass 2.00 g and charge 15.0 \muμC is fired at 21.0 m/s straight toward a second particle, originally stationary but free to move, with mass 5.00 g and charge 8.50 \muμC. Both particles are constrained to move only along the x axis. (a) At the instant of closest approach, both particles will be moving at the same velocity. Find this velocity. (b) Find the distance of closest approach. After the interaction, the particles will move far apart again. At this time, find the velocity of (c) the 2.00-g particle and (d) the 5.00-g particle. \hat{i}

To learn more about  momentum conservation law click on the link below:

brainly.com/question/7538238

#SPJ4

5 0
2 years ago
Other questions:
  • The liquid electrolyte in the battery typically takes what kind of net charge?
    14·1 answer
  • The downward sliding characteristic of ridge-push is the result of
    15·1 answer
  • What information can be deduced by analyzing the graph?
    5·2 answers
  • ASAP When salt is dissolved in water, the result is a A. gas B. compound C. homogeneous mixture D. heterogeneous mixture
    8·2 answers
  • When a substance goes directly from a gaseous state to a solid state as dry ice does
    5·2 answers
  • You are hired to plan stunts for the next James Bond movie. In one of the film's opening scenes, Bond is going to evade some goo
    10·1 answer
  • Which point on the wave diagram below are 90° out of phase with each other?
    12·2 answers
  • Anyone have the electromagnetic induction lab? help fast pls
    10·1 answer
  • the sun transfers heat to earth through ___ this method of heat transfer is evidence that ___ is not necessary for heat to move
    12·1 answer
  • Earth's gravity acts upon objects with a steady force of __________. A. 8. 9 meters per second B. 9. 8 meters per minute C. 8. 9
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!