<span>#1
“A persons body continuing to move forward even though the car comes to
a sudden stop” Which newtons Law Do they pertain?
A: First Law </span>
<span>#2 “A fighter Pilot Feels Massive Amounts of forcé when his plane turns sharply” Which Newton Law?
A: First Law.
</span><span><span>You were following the
Newton's first law and kept your velocity straight until you departed from linear motion when you turn sharply; you are forced to follow the curve. <span>The
force that the jet exerts on you is called centripetal force and is
suitable for the center of curvature of the forced traveling path.</span></span>
</span><span>#3 “ A Paddle wheel boat pushed on water and the water pushes back causing the boat to move” Which Netwons Law?
C: Third Law</span>
E S *
The "E" represents Earth, "S" represent Sun, and the "*" represents the nearest star(which is Proxima Centauri).
The main thing to worry about here is units, so ill label everything out.
D'e,s'(Distance between earth and sun) = .<span>00001581 light years
D'e,*'(Distance between earth and Proxima) = </span><span>4.243 light years
Now this is where it gets fun, we need to put all the light years into centimeters.(theres alot)
In one light year, there are </span>9.461 * 10^17 centimeters.(the * in this case means multiplication) or 946,100,000,000,000,000 centimeters.
To convert we multiply the light years we found by the big number.
D'e,s'(Distance between earth and sun) = 1.496 * 10^13 centimeters<span>
D'e,*'(Distance between earth and Proxima) = </span><span>4.014 * 10^18 centimeters
</span>
Now we scale things down, we treat 1.496 * 10^13 centimeters as a SINGLE centimeter, because that's the distance between the earth and the sun. So all we have to do is divide (4.014 * 10^18 ) by (<span>1.496 * 10^13 ).
Why? because that how proportions work.
As a result, you get a mere 268335.7 centimeters.
To put that into perspective, that's only about 1.7 miles
A lot of my numbers came from google, so they are estimations and are not perfect, but its hard to be on really large scales.</span>
Answer:
1) d
2) 5 m/s
3) 100
Explanation:
The equation of position x for a constant acceleration a and an initial velocity v₀, initial position x₀, time t is:
(i) 
The equation for velocity v and a constant acceleration a is:
(ii) 
1) Solve equation (ii) for acceleration a and plug the result in equation (i)
(iii) 
(iv) 
Simplify equation (iv) and use the given values v = 0, x₀ = 0:
(v) 
2) Given v₀= 3m/s, a=0.2m/s², t=10 s. Using equation (ii) to get the final velocity v:
3) Given v₀=0m/s, t₁=10s, t₂=1s and x₀=0. Looking for factor f = x(t₁)/x(t₂) using equation(i) to calculate x(t₁) and x(t₂):

Answer:
145.8m
Explanation:
The toss distance is given by:

Answer:
10.125 meters?
Explanation:
Im taking 5.75m/s + 1.25 m/s/s (3.5) = my answer.
In those 3.5 seconds it travels 4.375.
I added that to 5.75 to get 10.125m