Answer:
(A) 3.1 m/s
(B) 2.0 s
Explanation:
At the minimum speed, the force of gravity equals the centripetal force.
mg = m v² / r
v = √(gr)
v = √(9.8 m/s² × 1.0 m)
v = 3.1 m/s
The time is the circumference divided by the speed.
t = (2π × 1.0 m) / (3.1 m/s)
t = 2.0 s
Answer:
It depends if they have the same lightbulb in them.
Explanation:
Answer:
D. Calculate the area under the graph.
Explanation:
The distance made during a particular period of time is calculated as (distance in m) = (velocity in m/s) * (time in s)
You can think of such a calculation as determining the area of a rectangle whose sides are velocity and time period. If you make the time period very very small, the rectangle will become a narrow "bar" - a bar with height determined by the average velocity during that corresponding short period of time. The area is, again, the distance made during that time. Now, you can cover the entire area under the curve using such narrow bars. Their areas adds up, approximately, to the total distance made over the entire span of motion. From this you can already see why the answer D is the correct one.
Going even further, one can make the rectangular bars arbitrarily narrow and cover the area under the curve with more and more of these. In fact, in the limit, this is something called a Riemann sum and leads to the definition of the Riemann integral. Using calculus, the area under a curve (hence the distance in this case) can be calculated precisely, under certain existence criteria.
answer:
an opaque object is one that doesn't let light pass through it. instead, it reflects or absorbs the light that strikes it.
explanation:
in this case, we see the material because of the transmitted light. therefore, the wavelength of the transmitted light determines the color that the object appears.
good luck :)
i hope this helps
have a nice day !!
Answer:
The tension is 
The horizontal force provided by hinge 
Explanation:
From the question we are told that
The mass of the beam is
The length of the beam is 
The hanging mass is 
The length of the hannging mass is 
The angle the cable makes with the wall is 
The free body diagram of this setup is shown on the first uploaded image
The force
are the forces experienced by the beam due to the hinges
Looking at the diagram we ca see that the moment of the force about the fixed end of the beam along both the x-axis and the y- axis is zero
So

Now about the x-axis the moment is

=> 
Substituting values


Now about the y-axis the moment is

Now the torque on the system is zero because their is no rotation
So the torque above point 0 is





The horizontal force provided by the hinge is

Now substituting for T

