Temperature is just a measure of how HOT or COLD a substance is, which can be easily defined by a magnitude using a numerical value say “300 K” or “27°C”. Hence we can say it is a scalar quantity.
But the energy which transfer by virtue of a temperature difference is a vector quantity, as it has both magnitude and direction of motion (from High temperature to low temperature region).
<span>The longest wavelength within the visible spectrum is the red
light. The answer is letter C. It is called visible light because it is the
only light that can be seen by the human eye. Red light is the longest
wavelength around 620 to 750 nanometer. It is followed by orange which has a
wavelength of 590 t 620 nanometer. And then blue which has a wavelength of 450
to 495 nanometer. And the shortest wavelength is violet which has a wavelength
of 380 to 459 nanometer. </span>
To develop this problem, it is necessary to apply the concepts related to the description of the movement through the kinematic trajectory equations, which include displacement, velocity and acceleration.
The trajectory equation from the motion kinematic equations is given by

Where,
a = acceleration
t = time
= Initial velocity
= initial position
In addition to this we know that speed, speed is the change of position in relation to time. So

x = Displacement
t = time
With the data we have we can find the time as well




With the equation of motion and considering that we have no initial position, that the initial velocity is also zero then and that the acceleration is gravity,





Therefore the vertical distance that the ball drops as it moves from the pitcher to the catcher is 1.46m.
Answer:
the electric field strength of this charge is two times the strength of the other charge
Explanation:
Using the relationship between electric field and the charge, which is inversely proportionality. Let the the magnitude of the first charge be Q and the respective electric field be E. It implies that;
E1/E2 = Q2/Q1
E2 = E1 x Q1/Q2
= E x Q/ (Q/2)
= 2E