Three point charges have equal magnitudes, two being positive and one negative. These charges are fixed to the corners of an equ
ilateral triangle, as the drawing shows. The magnitude of each of the charges is 3.5 µC, and the lengths of the sides of the triangle are 2.9 cm. Calculate the magnitude of the net force that each charge experiences.
The magnitude of the force on positive charges will be and the magnitude of the force on the negative charge is .
Explanation:
Given:
The value of the charges, .
The length of each side of the triangle, .
Consider a equilateral triangle , as shown in the figure. Let two point charges of magnitude are situated at points and and another point charge is situated at point .
The value of the force on the charge at point due to charge at point is given by
The value of the force on the charge at point due to charge at point is given by
The net resultant force on the charge at point is given by
The value of the force on the charge at point due to charge at point is given by
The value of the force on the charge at point due to charge at point is given by
The net resultant force on the charge at point is given by
The value of the force on the charge at point due to charge at point is given by
The value of the force on the charge at point due to charge at point is given by
The net resultant force on the charge at point is given by
Substitute for , for and for in equation (1), we have
Substitute for , for and for in equation (2), we have
Substitute for , for and for in equation (3), we have
When an electron is released from rest, in an uniform electric field, it will accelerate moving in a direction opposite to the field (as the field has the direction that it would take a positive test charge, and the electron carries a negative charge).
It will move towards a point with a higher potential, so its kinetic energy will increase, while its potential energy will decrease:
⇒ ΔK + ΔU = 0 ⇒ ΔK = -ΔU = - (-e*ΔV)
As ΔV>0, we conclude that the electric potential energy decreases while the kinetic energy increases in the same proportion, in order to energy be conserved, in absence of non-conservative forces.
The heating of magma and the continuous cycle of evolution of the magma creating a convection current is the reason for the evolution of Earths tectonic plates.
Explanation:
Tectonic plates are ready to move because the Earth's lithosphere has higher strength than the underlying asthenosphere. Lateral density changes in the mantle appear in convection. Plate movement is believed to be driven by a succession of the motion of the seafloor apart from the extended ridge (due to variations in topography and density of the crust.