Answer:
0.6 m/s
Explanation:
The details of the masses and velocities are;
The mass of the ice skater, m₁ = 80 kg
The mass of the ball, m₂ = 8 kg
The speed with which the skater tosses the ball forward, v₂ = 6 m/s
Therefore;
According to the principle of conservation of linear momentum, we have;
m₁·v₁ = m₂·v₂
Where;
v₁ = The skater's reactive velocity
Therefore, we get;
80 kg × v₁ = 8 kg × 6 m/s
v₁ = 8 kg × 6 m/s/(80 kg) = 0.6 m/s
The skater's reactive velocity, v₁ = 0.6 m/s.
Answer:
72 m
Explanation:
Given:
v₀ = 0 m/s
v = 60 m/s
a = 25 m/s²
Find: Δx
v² = v₀² + 2aΔx
(60 m/s)² = (0 m/s)² + 2 (25 m/s²) Δx
Δx = 72 m
Answer:
The discharge rate is 
Explanation:
From the question we are told that
The diameter is 
The head is 
The coefficient of contraction is 
The coefficient of velocity is 
The radius is mathematically evaluated as

substituting values


The area is mathematically represented as

substituting values


The discharge rate is mathematically represented as

substituting values


Answer:

Explanation:
The elastic potential energy of a spring is given by
, where
is the spring constant of the spring and
is displacement from point of equilibrium.
When released, this potential energy will be converted into kinetic energy. Kinetic energy is given by
, where
is the mass of the object and
is the object's velocity.
Thus, we have:

Substituting given values, we get:
