Answer:
d = 4 d₀o
Explanation:
We can solve this exercise using the relationship between work and the variation of kinetic energy
W = ΔK
In that case as the car stops v_f = 0
the work is
W = -fr d
we substitute
- fr d₀ = 0 - ½ m v₀²
d₀ = ½ m v₀² / fr
now they indicate that the vehicle is coming at twice the speed
v = 2 v₀
using the same expressions we find
d = ½ m (2v₀)² / fr
d = 4 (½ m v₀² / fr)
d = 4 d₀o
Answer: The common difference between surface EMG and intramuscular EMG is that that former is non-invasive while the later is an invasive method
Explanation:
Electromyography (EMG) is used clinically for the examination of muscle excitations (muscle electrical activity) in both normal or abnormal conditions. There are two forms of EMG includes:
--> Surface EMT and
--> Intramuscular EMT
Surface EMT is a non invasive method of examination of muscle excitations for superficial and easily accessible muscles.
Intramuscular EMT is the invasive method of examination of muscle excitations usually for deep muscles.
The difference between the two forms of EMT includes:
- surface EMT is non- invasive while intramuscular EMT is invasive
- surface EMT is used to access superficial muscle while intramuscular EMT is used to access deep muscles.
- surface EMT requires less skill and time to carry out while intramuscular EMT requires special skills and takes more time while carrying out the procedure.
At sea level, the size amid the 2 alkanes lets for pentane to simmer at a lower temperature than hexane. Phenol has a higher boiling point due to hydrogen bonding High altitude would have the same order while low pressure only cuts the temperature at which a solvent boils. Boiling has to do with molecular size, the occurrence/nonappearance of hydrogen bonds, and other steric issues.
So the answer would be pentane high altitude, hexane high altitude, hexane sea level, hexanol sea level. In order of boil first to boil last. This is clarified because altitude has a better effect on vapor pressure (and hence boiling points) than inter-molecular forces.
Answer:
The car manufacturers could increase bore of the cylinders, place the engine in the center or back of the car, add 1 to 2 turbochargers, and lower the center of gravity of the vehicle to increase traction.
Explanation:
Turbochargers would be recommended because they significantly increase both the torque of the engine as well as the amount of horses powering the car while also increasing original efficiency both with and without the additional power. Weight adjustment allows for lightweight vehicles with good traction. This is important to both keep control of the car under acceleration, but it also makes the vehicle more efficient due to the now sheddable unnecessary weight. A more obvious approach would be to increase the base horsepower and torque of the engine by increasing the bore of the cylinders and the weight of the pistons. This acts as an inertial lever, because the extra piston weight will drag the crankshaft faster. This could also be achieved by taking away piston weight, but this could be catastrophic should a piston slip.