Answer:
2.03 x 10²⁴N
Explanation:
Given parameters:
Mass of moon = 7.34 x 10²²kg
Mass of the earth = 5.97 x 10²⁴kg
Distance = 3.8 x 10⁵km
Unknown:
Gravitational force of attraction = ?
Solution:
To find the gravitational force of attraction between the masses, we use the expression below;
F =
G is the universal gravitation constant
m is the mass
1 and 2 represents moon and earth
r is the distance
F =
F =
= 2.03 x 10²⁴N
Answer:
B. 6.6%
Explanation:
The percentage error of a measurement can be calculated using the formula;
Percent error = (experimental value - accepted value / accepted value) × 100
In this question, the calibrated 250.0 gram mass is the accepted value while the weighed mass of 266.5 g is the experimental or measured value.
Hence, the percentage error can be calculated thus;
Percent error = (266.5-250.0/250.0) × 100
Percent error = 16.5/250 × 100
Percent error = 0.066 × 100
Percent error = 6.6%
Answer:
The unit is the barn, which is equal to 10-28 m^2 or 10-24 cm^2
Explanation:
The standard unit for measuring a nuclear cross section (denoted as σ)
32 kg m/s would be the kinetic energy.
If F = Gm₁m₂/d², and we change m₁ to 5m₁ and m₂ to 2m₂, then the new magnitude of the gravitational force is
F' = G (5m₁) (2m₂) / d²
F' = 10 Gm₁m₂ / d²
but this is really just F' = 10F. So J is the correct choice.