Answer:
Part C: P2 = 0.30 atm
Part D: V1 = 16.22 L.
Explanation:
Part C:
Initial pressure (P1) = 2.67 atm
Initial volume (V1) = 5.54 mL
Final pressure (P2) =.?
Final volume (V2) = 49 mL
The final pressure (P2) can be obtained as follow:
P1V1 = P2V2
2.67 x 5.54 = P2 x 49
Divide both side by 49
P2 = (2.67 x 5.54)/49
P2 = 0.30 atm
Therefore, the final pressure (P2) is 0.30 atm
Part D:
Initial pressure (P1) = 348 Torr
Initial volume (V1) =?
Final pressure (P2) = 684 Torr
Final volume (V2) = 8.25 L
The initial volume (V1) can be obtained as follow:
P1V1 = P2V2
348 x V1 = 684 x 8.25
Divide both side by 348
V1 = (684 x 8.25)/348
V1 = 16.22 L
Therefore, the initial volume (V1) is 16.22 L
It is A) 1,482 cm3 ..............
Answer:
7.98 × 10^3grams.
Explanation:
To find the mass of fluorine in the number of atoms provided, we first divide the number of atoms by Avagadros number (6.02 × 10^23atoms) to get the number of moles in the fluorine atom. That is;
number of moles (n) = number of atoms (nA) ÷ 6.02 × 10^23 atoms
n = 2.542 × 10^26 ÷ 6.02 × 10^23
n = 0.42 × 10^ (26-23)
n = 0.42 × 10^3
n = 4.2 × 10^2moles
Using mole = mass ÷ molar mass
Molar/atomic mass of fluorine (F) = 19g/mol
mass = molar mass × mole
Mass (g) = 19 × 4.2 × 10^2
Mass = 79.8 × 10^2
Mass = 7.98 × 10^3grams.
16 protons
Explanation: S2-: proton number 16; nucleon number 32
There are 16 protons (from the proton number). If it was a neutral atom, there would be 16 electrons.