Answer:
cats, ants, spiders, elephants, porcupine, tiger, kangaroo, and ostrich. Mosses, hornworts, liverworts, lycophyte, seed plants, pteridophytes, and archaeopteridales.
Explanation:
Answer:

Explanation:
We usually approximate the density of water to about
at room temperature. In terms of the precise density of water, this is not the case, however, as density is temperature-dependent.
The density of water decreases with an increase in temperature after the peak point of its density. The same trend might be spotted if the temperature of water is decreased from the peak point.
This peak point at which the density of water has the greatest value is usually approximated to about
. For your information, I'm attaching the graph illustrating the function of the density of water against temperature where you could clearly indicate the maximum point.
To a higher precision, the density of water has a maximum value at
, and the density at this point is exactly
.
Answer:
Carbon is also found in the atmosphere where it's a part of carbon dioxide gas emitted when fossil fuels are burned and when living organisms breathe. It's in organic matter in the soil, and it's in rocks. But far and away the most carbon on Earth is stored in a surprising place: the ocean. Carbon is also found in the atmosphere where it's a part of carbon dioxide gas emitted when fossil fuels are burned and when living organisms breathe. It's in organic matter in the soil, and it's in rocks. But far and away the most carbon on Earth is stored in a surprising place: the ocean.
Hope this helps!
T1-T2
40°+273=313-20°+273=293
313-293=20
the final temp is 20°
Answer: 2.75%
Explanation:
![pH=-log [H+]](https://tex.z-dn.net/?f=pH%3D-log%20%5BH%2B%5D)
![3.26 = -log [H+]](https://tex.z-dn.net/?f=3.26%20%3D%20-log%20%5BH%2B%5D)
![[H+] = 5.495\times 10^{-4} M](https://tex.z-dn.net/?f=%5BH%2B%5D%20%3D%205.495%5Ctimes%2010%5E%7B-4%7D%20M)

initial 0.020 0 0
eqm 0.020 -x x x
![K_a=\frac{[H+][A-]}{[HA]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%2B%5D%5BA-%5D%7D%7B%5BHA%5D%7D)
![K_a=\frac{[x][x]}{[0.020-x]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5Bx%5D%5Bx%5D%7D%7B%5B0.020-x%5D%7D)

![K_a=\frac{[5.495\times 10^{-4}]^2}{[0.020-5.495\times 10^{-4}]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5B5.495%5Ctimes%2010%5E%7B-4%7D%5D%5E2%7D%7B%5B0.020-5.495%5Ctimes%2010%5E%7B-4%7D%5D%7D)

percent dissociation = ![\frac{[H^+_eqm]}{[Acid_{initial}]}\times 100](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH%5E%2B_eqm%5D%7D%7B%5BAcid_%7Binitial%7D%5D%7D%5Ctimes%20100)
percent dissociation=
Thus percent dissociation= 2.75 %