Answer:
A. Molarity will increase .
Explanation:
Molarity = moles of solute per litre of solution
= moles of solute / volume of solution
If evaporation occurs , volume of solution decreases and moles of solute remains constant . Hence denominator decreases and numerator remains constant .
Hence the molarity increases .
Global wind patterns are mainly determined by unequal heating of the earth's surface, changes in air pressure, and earth's rotation. Change in air pressure: Air mainly circulates due to change in air pressure. It moves from a region of high air pressure to the region of lower air pressure.
Since volume and temperature are constant, this means that pressure and <u>number of moles</u> are <u>directly </u>proportional. the sample with the largest <u>number of moles</u> will have the <u>high </u>pressure.
Since, the ideal gas equation is also called ideal gas law. So, according to ideal gas equations,
PV = nRT
- P is pressure of the sample
- T is temperature
- V is volume
- n is the number of moles
- R is universal gas constant
At constant volume and temperature the equation become ,
P ∝ nR
since, R is also constant. So, conclusion of the final equation is
P ∝ n
The number of moles and pressure of the sample is directly proportion. So, on increasing number of moles in the sample , pressure of the sample also increases.
learn about ideal gas law
brainly.com/question/4147359
#SPJ4
The geosphere is about 99.94% of Earth's mass, so C is the answer.