Answer:
40 s
Explanation:
After 10 seconds, the first skater would have a 8m/s * 10s = 80 m head start
Let t be the number of seconds after the second skater starts will the second skater overtake the first skater
The distance traveled by the first skater after t seconds is

Similarly the distance traveled by the 2nd skater after t seconds is

Since the 2nd skater catches up to the 1st one after 80 m behind, the distance traveled by the 2nd one must be 80m greater than the distance of the 1st skater

We can substitute 



<span>The photoelectric effect is about electrons being ejected from metals when light is shined on metals. The electrons do not behave like waves in the photoelectric effect. Black body radiation is all about the radiation emitted by warm bodies and not about those bodies behaving like waves. The emission spectra of atoms is all about what light is given off by atoms when electrons in those atoms jump down to lower energy levels from higher levels. That also has nothing to do with matter behaving as a wave. Interference is classically defined as the generation of a new wave with an amplitude modulated according to the waves that interfere to form that new wave. Note its emphasis on the wave part.</span>
Answer:
The minimum speed is 14.53 m/s.
Explanation:
Given that,
r = 11 m
Friction coefficient = 0.51
Suppose we need to find the minimum speed, that the cylinder must make a person move at to ensure they will stick to the wall
When frictional force becomes equal to or greater than the weight of person
Then, he sticks to the wall
We need to calculate the minimum speed
Using formula for speed

Where,


Put the value into the formula


Hence, The minimum speed is 14.53 m/s.
Answer:
It is neither false nor true. When they collide some of one of the objects goes to the other object.
Explanation:
Everything starts from spectroscopy. Astronomers only have concentrated information at wavelengths that are emitted from the stars. What they do with this information is to obtain the frequency range of the stars and through spectroscopes they are responsible for dividing the radiation beams and determining the coincidence with the emission of those same waves, of chemical elements. From these observation techniques it is possible to obtain the composition and according to the color, obtaining characteristics such as temperature. The spectrum of stars consists of dark and bright lines called Fraunhofer lines. This spectrum is compared to the spectrum of different elements to find the composition of the stars. This is possible because the elements emit or absorb only specific wavelengths.