2.57 joule energy lose in the bounce
.
<u>Explanation</u>:
when ball is the height of 1.37 m from the ground it has some gravitational potential energy with respect to hits the ground
Formula for gravitational potential energy given by
Potential Energy = mgh
Where
,
m = mass
g = acceleration due to gravity
h = height
Potential energy when ball hits the ground
m= 0.375 kg
h = 1.37 m
g = 9.8 m/s²

Potential Energy = 5.03 joule
Potential energy when ball bounces up again
h= 0.67 m

Potential Energy = 2.46 joule
Energy loss = 5.03 - 2.46 = 2.57 joule
2.57 joule energy lose in the bounce
Answer:
Force is repulsive hence direction of force is away from wire
Explanation:
The first thing will be to draw a figure showing the condition,
Lets takeI attractive force as +ve and repulsive force as - ve and thereafter calculating net force on outer left wire due to other wires, net force comes out to be - ve which tells us that force is repulsive, hence direction of force is away from wire as shown in figure in the attachment.
(a) 5.66 m/s
The flow rate of the water in the pipe is given by

where
Q is the flow rate
A is the cross-sectional area of the pipe
v is the speed of the water
Here we have

the radius of the pipe is
r = 0.260 m
So the cross-sectional area is

So we can re-arrange the equation to find the speed of the water:

(b) 0.326 m
The flow rate along the pipe is conserved, so we can write:

where we have

and where
is the cross-sectional area of the pipe at the second point.
Solving for A2,

And finally we can find the radius of the pipe at that point:

Explanation:
It is given that,
Mass of the woman, m₁ = 52 kg
Angular velocity, 
Mass of disk, m₂ = 118 kg
Radius of the disk, r = 3.9 m
The moment of inertia of woman which is standing at the rim of a large disk is :


I₁ = 790.92 kg-m²
The moment of inertia of of the disk about an axis through its center is given by :


I₂ =897.39 kg-m²
Total moment of inertia of the system is given by :


I = 1688.31 kg-m²
The angular momentum of the system is :



So, the total angular momentum of the system is 4980.5 kg-m²/s. Hence, this is the required solution.
Answer:
the force would increase 4 times more
Explanation
more force results more mass or acceleration