The fuel released 90 calories of heat.
Let suppose that water experiments an entirely <em>sensible</em> heating. Hence, the heat released by the fuel is equal to the heat <em>absorbed</em> by the water because of principle of energy conservation. The heat <em>released</em> by the fuel is expressed by the following formula:
(1)
Where:
- Mass of the sample, in grams.
- Specific heat of water, in calories per gram-degree Celsius.
- Temperature change, in degrees Celsius.
If we know that
,
and
, then the heat released by the fuel is:

The fuel released 90 calories of heat.
We kindly invite to check this question on sensible heat: brainly.com/question/11325154
The solution before dilution and after dilution contains same number of moles, and water is added for dilution.
Option B
<h3><u>Explanation:</u></h3>
Suppose before dilution, the solution contains x moles of KCl in Y liter of water. Now as the concentration got halved, then the solution contains x moles of KCl in 2Y kiters of solution. So the number of moles of KCl in the solution remained constant.
Again, as the solution is diluted to half of the concentration, water must have been added with the solution to make it dilute.
Answer:
1L of hot water just below the Boling point
Explanation:
asking questions is best to learn please ask more questions
Nonpolar and small polar molecules can pass through the cell membrane, so they diffuse across it in response to concentration gradients. Carbon dioxide and oxygen are two molecules that undergo this simple diffusion through the membrane. The simple diffusion of water is known as osmosis.
Answer: this question is 3 days ago? Omg