Answer:
Inert gases
Explanation:
Inert elements have a stable electron configuration meaning their shells/orbitals are full with their requisite number of electrons. Therefore, gaining or losing an electron would take high ionization energy. Therefore they are less likely to be involved in chemical reaction unless a high amount of energy is used. An example of an inert gas is Helium.
When comparing single bonds between atoms of comparable types, the stronger the bond is, the bigger the atom, the weaker it is.
The length of the X-H bond lengthens while the strength of the bond shortens with increasing halogen size (F-H strongest, I-H weakest). When comparing single bonds between atoms of similar sorts, the larger the atom, the weaker the bond. It can be explained by the fact that less energy is required to break the bond the bigger the atom's atomic size. The force of attraction from the nucleus to the outermost orbit will be less for iodine since it has a larger atom than the other elements in the group.
Learn more about single bonds here-
brainly.com/question/16626126
#SPJ4
We know that [OH⁻] * [H⁺] = 10⁻¹⁴
plugging the value of [H⁺]
[OH⁻] * 1.2 * 10⁻³ = 10⁻¹⁴
[OH⁻] = 10⁻¹⁴ * (10³/1.2)
[OH⁻] = 833.3 * 10⁻¹⁴
[OH⁻] = 8.33 * 10⁻¹²
The molecules in gas are farther apart and have more room to bounce around than liquid
The sun of the protons a D neutrons in the nucleus of an atom is called the ATOMIC MASS