Answer is: 9,7 L is needed to store helium gas.
n(He) = 0,80 mol.
p(He) = 204,6 kPa.
T = 300 K.
R = 8,314 J/K·mol; universal gas constant.
Use ideal law eqaution: p·V = n·R·T.
V = n·R·T / p.
V(He) = 0,80 mol · 8,314 J/K·mol · 300 K ÷ 204,6 kPa.
V(He) = 9,75 L.
Answer:
Adding 1 mol of NaCl to 1 kg of water lower the vapor pressure of water <em><u>to the same extent</u></em> by adding 1 mol of
to 1 kg of water.
Explanation:
1) Moles of NaCl ,
Mass of water = m= 1 kg = 1000 g
Moles of water = 
Vapor pressure of the solution = 
Vapor pressure of the pure solvent that is water = 
Mole fraction of solute(NaCl)= 



The vapor pressure for the NaCl solution at 17.19 Torr.
2) Moles of sucrose ,
Mass of water = m = 1 kg = 1000 g
Moles of water = 
Vapor pressure of the solution = 
Vapor pressure of the pure solvent that is water = 
Mole fraction of solute ( glucose)= 



The vapor pressure for the glucose solution at 17.19 Torr.
p = p' = 17.19 Torr
Adding 1 mol of NaCl to 1 kg of water lower the vapor pressure of water to the same extent by adding 1 mol of
to 1 kg of water.
Answer:
I = 1.23 A
Explanation:
Given that,
The resistance of the lightbulb, R = 96.8 Ω
Voltage, V = 120 V
We need to find the current flows through the lightbulb. Let the current be I. We can use the ohm's law to find it i.e.

So, the current flows through the bulb is 1.23 A.
I'm pretty sure its D, Time of discovery of the body. Let me know (:
Why does a patch of garbage in the ocean effect humans on land