Answer:
2.1406 ×
m/sec
Explanation:
we know that energy is always conserved
so from the law of energy conservation

here V is the potential difference
we know that mass of proton = 1.67×
kg
we have given speed =50000m/sec
so potential difference 
now mass of electron =9.11×
so for electron

so the velocity of electron will be 2.1406×
m/sec
Soil profile includes all the sections/ horizons of the vertical soil depth from top to bottom including the transitions from one horizon to another. A soil horizon is a distinct layer/section of soil with more or less the same texture. Therefore, a soil profile is made of soil horizons.
Given that:
Energy of bulb (Work ) = 30 J,
Time (t) = 3 sec
The power consumption = ?
We know that, Power can be defined as rate of doing work
Power (P) = Work(Energy supplied) ÷ time
= 30 ÷ 3
= 10 Watts
<em> The power consumption is 10 W.</em>
Answer:
0.28 m
Explanation:
The following data were obtained from the question:
Force (F) = 5×10¯⁶ N
Charge 1 (q₁) = 6.7×10¯⁹ C
Charge 2 (q₂) = 6.7×10¯⁹ C
Electrical constant (K) = 9×10⁹ Nm²C¯²
Distance apart (r) =?
Thus, the distance between the two charges can be obtained as follow:
F = Kq₁q₂/r²
5×10¯⁶ = 9×10⁹ × 6.7×10¯⁹ × 6.7×10¯⁹/r²
5×10¯⁶ = 4.0401×10¯⁷ / r²
Cross multiply
5×10¯⁶ × r² = 4.0401×10¯⁷
Divide both side by 5×10¯⁶
r² = 4.0401×10¯⁷ / 5×10¯⁶
Take the square root of both side
r = √(4.0401×10¯⁷ / 5×10¯⁶)
r = 0.28 m
Therefore, the distance between the two charges is 0.28 m
Answer:
A. They have the same atomic numbers.
Explanation:
Elements are defined based on the atomic number, which is the number of protons in the nucleus: this means that atoms of the same element have always the same number of protons in their nuclei (and so, always the same atomic number).
The other choices are wrong because:
B. They have the same average atomic masses. --> this is false for isotopes, which are atoms of the same element having a different number of neutrons. Since the atomic mass is calculated from the sum of the masses of protons and neutrons in the nucleus, two isotopes of the same element have different atomic mass
C. They have the same number of electron shells. --> this can be false when an atom of an element loses/gains an electron, becoming an ion: in that case, the number of electron shells can change, since the number of electrons has changed.
D. They have the same number of electrons in their outermost shells. --> this is also false in case one of the atoms is an ion, since the number of electrons is different.