To solve this problem we will start from the definition of Force, as the product between the electric field and the proton charge. Once the force is found, it will be possible to apply Newton's second law, and find the proton acceleration, knowing its mass. Finally, through the linear motion kinematic equation we will find the speed of the proton.
PART A ) For the electrostatic force we have that is equal to

Here
q= Charge
E = Electric Force


PART B) Rearrange the expression F=ma for the acceleration

Here,
a = Acceleration
F = Force
m = Mass
Replacing,


PART C) Acceleration can be described as the speed change in an instant of time,

There is not
then

Rearranging to find the velocity,



Answer:
The potential energy is transformed into kinetic energy
Explanation:
This particular case is defined as the principle of energy conservation since energy is not created or destroyed only transforms. When you have potential energy it can be transformed into kinetic energy or vice versa. In this problem, we have the case of a ball that sits on a desk and then falls to the ground. In this way the ground will be taken as a reference point, this is a point at which the potential energy will be equal to zero in such a way that when the ball is on the desktop that is above the reference line its potential energy will be maximum. As the ball drops its potential energy decreases, as the height relative to the ground (reference point) decreases. In contrast its kinetic energy increases and increases as it approaches the ground. So when it hits the ground it will have maximum kinetic energy and will be equal to the potential energy for when the ball was on the desk.
Therefore:
![E_{p} = potential energy [J] = E_{k} = kinetic energy [J]where:\\E_{p} =m*g*h\\m =mass [kg]\\g=gravity[m/s^2]\\h=elevation[m]\\E_{k} = \frac{1}{2} *m*v^{2} \\where:\\v=velocity [m/s]\\\frac{1}{2} *m*v^{2} = m*g*h](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3D%20potential%20energy%20%5BJ%5D%20%3D%20E_%7Bk%7D%20%3D%20kinetic%20energy%20%5BJ%5Dwhere%3A%5C%5CE_%7Bp%7D%20%3Dm%2Ag%2Ah%5C%5Cm%20%3Dmass%20%5Bkg%5D%5C%5Cg%3Dgravity%5Bm%2Fs%5E2%5D%5C%5Ch%3Delevation%5Bm%5D%5C%5CE_%7Bk%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%5C%5Cwhere%3A%5C%5Cv%3Dvelocity%20%5Bm%2Fs%5D%5C%5C%5Cfrac%7B1%7D%7B2%7D%20%20%2Am%2Av%5E%7B2%7D%20%3D%20m%2Ag%2Ah)
Answer:
b
Explanation:
there is no net force on the basketball
Scientists<span> use the </span>scientific method<span> to make testable explanations and predictions about the world. A </span>scientist<span> asks a question and develops an experiment, or set of experiments, to answer that question.
</span><span>Ask a QuestionDo Background ResearchConstruct a HypothesisTest Your Hypothesis by Doing an ExperimentAnalyze Your Data and Draw a ConclusionCommunicate Your Results</span>
C. This is a direct current
<h3>
</h3><h3>
What is schematic Current?</h3>
An electrical schematic is a diagram that shows how all of the wires and components in an electronic circuit are connected.
The ability to read electrical schematics is a really useful skill to have. To start developing your schematic reading abilities,
it’s important to memorize the most common schematic symbols.
Each physical component (i.e resistor, capacitor, transistor) has a unique schematic symbol.
Learn more about Schematic current:
brainly.com/question/15193719
#SPJ1