1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Firlakuza [10]
2 years ago
5

The molar mass of K2S is 110.27 g/mol. What is the mass of 2.75 moles K2S? [?] g K₂S

Chemistry
1 answer:
aliya0001 [1]2 years ago
6 0

The mass of 2.75 mol K₂S is 303.24 grams.

  • Applying the mole concept:

      Number of moles(n) = given mass(m) / molar mass(M)

      n = m / M

  • Now applying the formula for the number of moles-

       i.e. number of moles of K₂S = mass of K₂S / Molas mass of K₂S

      As per question, Molar mass of K₂S, M = 110.27 g/mol

      and, number of moles of K₂S, n  = 2.75 moles

  • ∴ n = m / 110.27

        2.75 = m / 110.27

        m = 2.75 x 110.27

            = 303.24

     m    = 303.24 grams.

  Hence, the mass of 2.75 mol K₂S is 303.24 grams.

 To learn more about the mole concept, refer to:

  brainly.com/question/768852

  # SPJ2

You might be interested in
Part A: Three gases (8.00 g of methane, CH_4, 18.0g of ethane, C_2H_6, and an unknown amount of propane, C_3H_8) were added to t
myrzilka [38]

Explanation:

Part A:

Total pressure of the mixture = P = 5.40 atm

Volume of the container = V = 10.0 L

Temperature of the mixture = T = 23°C = 296.15 K

Total number of moles of gases = n

PV = nRT (ideal gas equation)

n=\frac{PV}{RT}=\frac{5.40 atm\times 10.0 L}{0.0821 atm L/mol K\times 296.15 K}=2.22 mol

Moles of methane gas = n_1=\frac{8.00 g}{16 g/mol}=0.5 mol

Moles of ethane gas  =n_2=\frac{18.0 g}{30 g/mol}=0.6 mol

Moles of propane gas = n_3

n=n_1+n_2+n_3

2.22=0.5 mol +0.6 mol+ n_3

n_3= 2.22 mol - 0.5 mol -0.6 mol= 1.12 mol

Mole fraction of methane =\chi_1=\frac{n_1}{n_1+n_2+n_3}=\frac{n_1}{n}

\chi_1=\frac{0.5 mol}{2.22 mol}=0.2252

Similarly, mole fraction of ethane and propane :

\chi_2=\frac{n_2}{n}=\frac{0.6 mol}{2.22 mol}=0.2703

\chi_3=\frac{n_3}{n}=\frac{1.12 mol}{2.22 mol}=0.5045

Partial pressure of each gas can be calculated by the help of Dalton's' law:

p_i=P\times \chi_1

Partial pressure of methane gas:

p_1=P\times \chi_1=5.40 atm\times 0.2252=1.22 atm

Partial pressure of ethane gas:

p_2=P\times \chi_2=5.40 atm\times 0.2703=1.46 atm

Partial pressure of propane gas:

p_3=P\times \chi_3=5.40 atm\times 0.5045=2.72 atm

Part B:

Suppose in 100 grams mixture of nitrogen and oxygen gas.

Percentage of nitrogen = 37.8 %

Mass of nitrogen in 100 g mixture = 37.8 g

Mass of oxygen gas = 100 g - 37.8 g = 62.2 g

Moles of nitrogen gas = n_1=\frac{37.8 g g}{28g/mol}=1.35 mol

Moles of oxygen gas  =n_2=\frac{62.2 g}{32 g/mol}=1.94 mol

Mole fraction of nitrogen=\chi_1=\frac{n_1}{n_1+n_2}

\chi_1=\frac{1.35 mol}{1.35 mol+1.94 mol}=0.4103

Similarly, mole fraction of oxygen

\chi_2=\frac{n_2}{n_1+n_2}=\frac{1.94 mol}{1.35 mol+1.94 mol}=0.5897

Partial pressure of each gas can be calculated by the help of Dalton's' law:

p_i=P\times \chi_1

The total pressure is 405 mmHg.

P = 405 mmHg

Partial pressure of nitrogen gas:

p_1=P\times \chi_1=405 mmHg\times 0.4103 =166.17 mmHg

Partial pressure of oxygen gas:

p_2=P\times \chi_2=405 mmHg\times 0.5897=238.83 mmHg

3 0
3 years ago
6. 100 ml of gaseous hydrocarbon consumes 300
mario62 [17]

Answer:

  • <u><em>a. C₂H₄</em></u>

Explanation:

At constant pressure and temperature, the mole ratio of the gases is equal to their volume ratio (a consequence of Avogadro's law).

Hence, the <em>complete combustion reaction</em> that has a ratio of 100 ml of gaseous hydrocarbon to 300 ml of oxygen, is that whose mole ratio is 1 mol hydrocarbon : 3 mol of oxygen.

Then, you must write the balanced chemical equations for the complete combustion of the four hydrocarbons in the list of choices, and conclude which has such mole ratio (1 mol hydrocarbon : 3 mol oxygen).

A complete combustion reaction of a hydrocarbon is the reaction with oxygen that produces CO₂ and H₂O, along with the release of heat and light.

<u>a. C₂H₄:</u>

  • C₂H₄ (g) + 3O₂ (g) → 2CO₂(g)  + 2H₂O (g)

Precisely, for this reaction the mole ratio is 1 mol C₂H₄: 2 mol O₂, hence, this is the right choice.

The following analysis just shows that the other options are not right.

<u>b. C₂H₂:</u>

  • 2C₂H₂ (g) + 5O₂ (g) → 4CO₂(g)  + 2H₂O (g)

The mole ratio for this reaction is 2 mol C₂H₂ :5 mol O₂.

<u>с. С₃Н₈</u>

  • C₃H₈ (g) + 5O₂ (g) → 3CO₂(g)  + 4H₂O (g)

The mole ratio is 1 mol C₃H₈ : 5 mol O₂

<u>d. C₂H₆</u>

  • 2C₂H₆ (g) +7 O₂ (g) → 4CO₂(g)  + 6H₂O (g)

The mole ratio is 2 mol C₂H₆ : 7 mol O₂

7 0
4 years ago
A marble is sitting motionless on a table. How can you make it move?
Salsk061 [2.6K]
You can pick it up and move it
8 0
3 years ago
Read 2 more answers
In a water molecule (H2O), the oxygen atom has two unshared pairs of electrons and two bonding pairs of electrons. How do the un
vladimir1956 [14]

Answer:

They reduce the bond angle to be slightly lower than the tetrahedral bond angle, approximately 104.45 degrees.

Explanation:

The unshared pair of electrons or lone pair electrons in order to have the minimum repulsion possible with each other pushes the other bonding pairs closer together making the bond angle smaller or bent.

The bond angle is slightly lower than the tetrahedral bond angle of 108 degrees, leaving the water molecule with a bent molecular geometry.

4 0
3 years ago
Hurry PLEASE HELP!
avanturin [10]

B. 11,540

<h3>Further explanation </h3>

The atomic nucleus can experience decay into 2 particles or more due to the instability of its atomic nucleus.  

Usually radioactive elements have an unstable atomic nucleus.  

General formulas used in decay:  

\large{\boxed{\bold{N_t=N_0(\dfrac{1}{2})^{t/t\frac{1}{2} }}}

T = duration of decay  

t 1/2 = half-life  

N₀ = the number of initial radioactive atoms  

Nt = the number of radioactive atoms left after decaying during T time  

Nt=25 g

No=100 g

t1/2=5770 years

\tt 25=100\dfrac{1}{2}^{T/5770}\\\\\dfrac{1}{4}=\dfrac{1}{2}^{T/5770}\\\\2=T/5770\rightarrowT=11540~years

7 0
3 years ago
Other questions:
  • If you combine 370.0 mL of water at 25.00 °C and 110.0 mL of water at 95.00 °C, what is the final temperature of the mixture? Us
    15·1 answer
  • Draw the addition product formed when one equivalent of hcl reacts with the following diene.
    13·1 answer
  • Basic Chem:
    15·1 answer
  • Please help l need to correct it
    5·2 answers
  • HELP!!! PLEASE!! I don't know this one question!!!
    9·1 answer
  • Balanced chemical equation for formation of bleaching powder?​
    5·2 answers
  • Can someone answer 5 for me please?
    5·1 answer
  • What do I do if I like someone but they think your annoying
    10·1 answer
  • URGENT PLS HELP What are derived units?
    5·1 answer
  • Correct answer gets brainest! ✨
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!