It has to be one continuous column of cloud (air) connected to the ground and in constant rotation.
Answer:
quantity A is mass and quantity B is wright
Answer:
A) 
B) 
C) 
D) mosquitoes speed in part B is very much larger than that of part C.
Explanation:
Given:
- Distance form the sound source,

- sound intensity level at the given location,

- diameter of the eardrum membrane in humans,

- We have the minimum detectable intensity to the human ears,

(A)
<u>Now the intensity of the sound at the given location is related mathematically as:</u>
..........................................(1)



<em>As we know :</em>


is the energy transferred to the eardrums per second.
(B)
mass of mosquito, 
<u>Now the velocity of mosquito for the same kinetic energy:</u>



(C)
Given:
- Sound intensity,

<u>Using eq. (1)</u>



Now, power:



Hence:




(D)
mosquitoes speed in part B is very much larger than that of part C.
Answer:
A) d = 11.8m
B) d = 4.293 m
Explanation:
A) We are told that the angle of incidence;θ_i = 70°.
Now, if refraction doesn't occur, the angle of the light continues to be 70° in the water relative to the normal. Thus;
tan 70° = d/4.3m
Where d is the distance from point B at which the laser beam would strike the lakebottom.
So,d = 4.3*tan70
d = 11.8m
B) Since the light is moving from air (n1=1.00) to water (n2=1.33), we can use Snell's law to find the angle of refraction(θ_r)
So,
n1*sinθ_i = n2*sinθ_r
Thus; sinθ_r = (n1*sinθ_i)/n2
sinθ_r = (1 * sin70)/1.33
sinθ_r = 0.7065
θ_r = sin^(-1)0.7065
θ_r = 44.95°
Thus; xonsidering refraction, distance from point B at which the laser beam strikes the lake-bottom is calculated from;
d = 4.3 tan44.95
d = 4.293 m
I think it’s A not 100% sure