1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lostsunrise [7]
3 years ago
7

What are important things about mental health

Physics
2 answers:
Paul [167]3 years ago
8 0

Answer:

Mental health includes our emotional, psychological, and social well-being. It affects how we think, feel, and act. It also helps determine how we handle stress, relate to others, and make healthy choices. Mental health is important at every stage of life, from childhood and adolescence through adulthood

Explanation:

navik [9.2K]3 years ago
6 0
Mental health includes our emotional, psychological, and social well-being. It affects how we think, feel, and act. It also helps determine how we handle stress, relate to others, and make healthy choices. Mental health is important at every stage of life, from childhood and adolescence through adulthood.
You might be interested in
The binding energies of K-shell and L-shell electrons in a certain metal are EK and EL, respectively, If a Kαx ray from this met
Svetach [21]

Answer:

The separation distance between the parallel planes of an atom is hc/2sinθ(EK - EL)

Explanation:

The relationship between energy and wavelength is expressed below:

E = hc/λ

λ = hc/EK - EL

Considering the condition of Bragg's law:

2dsinθ = mλ

For the first order Bragg's law of reflection:

2dsinθ = (1)λ

2dsinθ = hc/EK - EL

d = hc/2sinθ(EK - EL)

Where 'd' is the separation distance between the parallel planes of an atom, 'h' is the Planck's constant, 'c' is the velocity of light, θ is the angle of reflection, 'EK' is the energy of the K shell and 'EL' is the energy of the K shell.

Therefore, the separation distance between the parallel planes of an atom is hc/2sinθ(EK - EL)

5 0
3 years ago
Water of density 1000 kg/m3 falls without splashing at a rate of 0.373 L/s from a height of 40.5 m into a 0.64 kg bucket on a sc
Sphinxa [80]

Answer:

       F_scale = 20.18 N

Explanation:

The scale reading corresponds to two factors, the first the weight of the water in the container and the second the force of the liquid that is falling at the moment of reading.

* Let's find the amount of liquid in the container for a time of t = 2.93 s

Let's use a direct proportion rule. If 0.373 l falls in one second at t = 2.93 s, how many liters are there

        V_{water} = 2.93 s (0.373 l / 1s) = 1.09 l

        V_{water} = 1.09 10⁻³ m³

the amount of water is

       ρ = m / V

       m = ρ V

       m = 1000 1.09 10⁻³

       m = 1.09 kg

so the weight of the liquid in the container for this time is

       W = mg

       W = 1.09 9.8

       W = 10.68 N

* Let's look for the force of the falling jet

Let's use Bernoulli's equation, where the subscript 1 is for the container and the subscript 2 is for the water at a height h

        P₁ + 1/2 ρ g v₁² + ρ g y₁ = P₂ + 1/2  ρ g v₂² + ρ g y₂

In this case, the water falls freely, so the external pressure is atmospheric.

         P₂ = P_{atm}

since they indicate that the water falls, we assume that its initial velocity is zero v₂ = 0

let's use kinematics to find the speed of a drop when it reaches the container y = 0

         v² = v₀² - 2 g (y-y₀)

         v = \sqrt{0 -2 g ( 0-y_o)}

let's calculate

         v = √(2 9.8 40.5)

         v = 28.17 m / s

this is the speed in the container v₁ = 28.17 m / s

the height from where it falls is y₂ = 40.5 and reaches the container y₁ = 0

we substitute in Bernoulli's equation

         P₁ +1/2 ρ g v₁² + 0 = P_{atm} + 0 + ρ g y₂

         P₁ + ½ ρ g v₁² = P_{atm} + ρ g y₂

         P₁ = P_{atm} + ρ g y₂ - ½ ρ g v₁²

         P₁ = 1 10⁵ + 1000 9.8 40.5 - ½ 1000 28.17²

         P₁ = 1 10⁵ + 3.97 10⁵ - 3.69 10⁵

         P₁ = 1.28 10⁵ Pa

The definition of Pressure is

         P = F / A

         F = P A

We must suppose a time to carry out the reading suppose an average time of the modern equipment t = 0.1 s, in this time how much is now arriving

          m₂ = 0.373 0.2 = 0.0746 l = 0.0746 10⁻³ m³

the volume is V = A l

if the length of l = 1 m

A = 0.0746 10⁻³ m³ = 7.45 10⁻⁵ m²

the force of this jet is

            F = P A

            F = 1.28 10⁵  7.46 10⁻⁵

            F = 9.5 N

with these data let's use the equilibrium equation

           F_ scale -W - F = 0

           F_scale = W + F

           F_scale = 10.682 + 9.5

           F_scale = 20.18 N

4 0
3 years ago
Car B starts at point X and moves clockwise around a circular track at a constant rate of 2 mph. Ten hours later, Car A leaves f
stealth61 [152]

Answer:

20.96 h

Explanation:

The perimeter of the track is 2*pi*r = 20pi miles

In 10 hours, car B would have moved 20miles. So, when Car A leaves from point X, car B is 20pi - 20 miles from point X counter-clockwise and car A.

From here, we can express the distance of A from X like this:

xa = 3t

And the distance of B would be:

xb = 20pi - 20 - 2t

The time t where they would passed each other and put  12 miles between them would be the one where xa - xb is equal to 12:

xa - xb = 12

3t - (20pi - 20 - 2t) = 12

5t = 20 pi - 8

t = (20pi - 8)/5 = 10.96 h

Remember to add this value to the 10 hours car B had already been racing:

t = 20.96h

4 0
3 years ago
An airplane is .68 Kilometers long. How many Millimeters long is the plane?
xxTIMURxx [149]

Answer:

680000

mark brainliest

4 0
3 years ago
Read 2 more answers
A particle (charge = +0.8 mC) moving in a region where only electric forces act on it has a kinetic energy of 6.7 J at point A.
Maksim231197 [3]

Answer:

The kinetic energy of the particle as it moves through point B is 7.9 J.

Explanation:

The kinetic energy of the particle is:

\Delta K = \Delta E_{p} = q\Delta V

<u>Where</u>:

K: is the kinetic energy

E_{p}: is the potential energy

q: is the particle's charge = 0.8 mC

ΔV: is the electric potential = 1.5 kV                                    

\Delta K = q \Delta V= 0.8 \cdot 10^{-3} C*1.5 \cdot 10^{3} V = 1.2 J

Now, the kinetic energy of the particle as it moves through point B is:

\Delta K = K_{f} - K_{i}

K_{f} = \Delta K + K_{i} = 1.2 J + 6.7 J = 7.9 J

Therefore, the kinetic energy of the particle as it moves through point B is 7.9 J.

I hope it helps you!      

8 0
4 years ago
Other questions:
  • For a certain spring, k = 15N/m. A weight is hung from the spring, stretching it from 0.3m to 0.4m. What force did the weight pr
    6·1 answer
  • Does a physical change affect the identity of a substance? Does a chemical change affect the identity of a substance?
    5·1 answer
  • The same force is applied to two skateboards. One rolls across the room and the other moves a few feet and comes to a stop. Wher
    10·2 answers
  • Volcanoes are often formed at plate boundaries. This is a convergent plate boundary. From the choices listed, pick the correct d
    8·2 answers
  • What does Einstein's famous equation for nuclear energy, E = mc^2, mean?
    10·1 answer
  • What deep ocean feature forms at subduction zones
    9·1 answer
  • Electric fish generate current with biological cells called electroplaques, which are physiological emf devices. The electroplaq
    15·1 answer
  • A gorilla is hanging motionless on a tree branch. If the gorilla's weight is 400 Newtons, what must be the tension in the tree b
    7·1 answer
  • What should a person do to reduce the risk of developing osteoporosis if it runs in the family?
    8·1 answer
  • Researchers have found that the larvae of all North American firefly species glow as a warning sign to ward off predators. Howev
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!